Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity: It's in the water

08.05.2008
What if hydrology is more important for predicting biodiversity than biology?

Research published in the May 8th issue of the journal Nature challenges current thinking about biodiversity and opens up new avenues for predicting how climate change or human activity may affect biodiversity patterns.

In the article, an international group of researchers demonstrates that the distribution of fish species in a river system can be accurately predicted with a simple method that uses only the geomorphology of the river network and rainfall measurements for the river system.

The 3,225,000 km2 Mississippi-Missouri river basin covers all or part of 31 US states, spanning diverse habitat types and encompassing very different environmental conditions. The one thing linking all these habitats is the vast river network. Using geomorphological data from the US Geological Survey, the researchers – hydrologists from Princeton University and the EPFL in Lausanne, Switzerland, and biologists from the University of Maryland – identified 824 sub-basins in the network. In these, the simple presence (or not) of 433 species of fish was established from a database of US freshwater fish populations. Data on the average runoff production –the amount of rainfall that ends up in the river system and not evaporated back into the air – was then used to calculate the habitat capacity of each sub-basin.

With just four parameters, it’s “an almost ridiculously simple model,” explains EPFL professor Andrea Rinaldo. The model results were compared to extensive data on actual fish species distributions. Various different measures of biodiversity were analyzed, and the researchers were surprised to find that the model captured these complex patterns quite accurately. The model is all the more remarkable for what it does not contain – any reference, anywhere, to the biological properties of individual fish species.

It is a formulation that could be applied to any river system, or in fact, any network at all. All that's needed are the geomorphology of the landscape and an estimate of average dispersal behavior and habitat capacity. This model is general enough that it could be used to explore population migrations or epidemics of water-borne diseases in addition to biodiversity patterns. The researchers plan to extend their work to explore the extent to which simple hydrology can act as the determining factor in a wide range of biodiversity patterns.

“These results are a powerful reminder of the overarching importance of water, and the water-defined landscape, in determining patterns of life,” notes Princeton professor Ignacio Rodriguez-Iturbe. It provides a framework that could be used to connect large scale environmental changes to biodiversity. Changes in precipitation patterns, perhaps due to global climate change, could be mapped to changes in habitat capacities in the model, ultimately providing a way to estimate how climate change would alter large-scale patterns of biodiversity. It could also be used for an assessment of the impact of specific, local human activities, such as flow re-routing or damming, on the biodiversity patterns in a river network.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

More articles from Ecology, The Environment and Conservation:

nachricht Project provides information on energy recovery from agricultural residues in Germany and China
13.02.2020 | Deutsches Biomasseforschungszentrum

nachricht New exhaust gas measurement registers ultrafine pollutant particles for the first time
21.01.2020 | Technische Universität Graz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>