Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Too much technology may be killing beneficial bacteria

02.05.2008
MU engineer concerned about environmental impact of silver nanoparticles in wastewater treatment

Too much of a good thing could be harmful to the environment. For years, scientists have known about silver’s ability to kill harmful bacteria and, recently, have used this knowledge to create consumer products containing silver nanoparticles.

Now, a University of Missouri researcher has found that silver nanoparticles also may destroy benign bacteria that are used to remove ammonia from wastewater treatment systems. The study was funded by a grant from the National Science Foundation.

Several products containing silver nanoparticles already are on the market, including socks containing silver nanoparticles designed to inhibit odor-causing bacteria and high-tech, energy-efficient washing machines that disinfect clothes by generating the tiny particles. The positive effects of that technology may be overshadowed by the potential negative environmental impact.

“Because of the increasing use of silver nanoparticles in consumer products, the risk that this material will be released into sewage lines, wastewater treatment facilities, and, eventually, to rivers, streams and lakes is of concern,” said Zhiqiang Hu, assistant professor of civil and environmental engineering in MU’s College of Engineering. “We found that silver nanoparticles are extremely toxic. The nanoparticles destroy the benign species of bacteria that are used for wastewater treatment. It basically halts the reproduction activity of the good bacteria.”

Hu said silver nanoparticles generate more unique chemicals, known as highly reactive oxygen species, than do larger forms of silver. These oxygen species chemicals likely inhibit bacterial growth. For example, the use of wastewater treatment “sludge” as land-application fertilizer is a common practice, according to Hu. If high levels of silver nanoparticles are present in the sludge, soil used to grow food crops may be harmed.

Hu is launching a second study to determine the levels at which the presence of silver nanoparticles become toxic. He will determine how silver nanoparticles affect wastewater treatment processes by introducing nanomaterial into wastewater and sludge. He will then measure microbial growth to determine the nanosilver levels that harm wastewater treatment and sludge digestion.

The Water Environment Research Foundation recently awarded Hu $150,000 to determine when silver nanoparticles start to impair wastewater treatment. Hu said nanoparticles in wastewater can be better managed and regulated. Work on the follow-up research should be completed by 2010.

Bryan E. Jones | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Surface clean-up technology won't solve ocean plastic problem
04.08.2020 | University of Exeter

nachricht Improving the monitoring of ship emissions
03.08.2020 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>