Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Streams natural filters, if not overloaded

14.03.2008
Streams are natural filters that help remove and transform pollutants that drain from surrounding watersheds, including excess nitrogen from human activities. Scientists know this as a result of many hours of getting their hands – if not dirty, at least very wet -- monitoring streams nationwide.

“Nitrogen removal in streams is important because it reduces the potential for eutrophication – the excessive growth of algae and aquatic plants in downstream lakes and coastal marine waters,” said Jack Webster, professor of biology at Virginia Tech. “Eutrophication in the Chesapeake Bay has damaged the oyster industry in Virginia and in the Gulf of Mexico, the Mississippi River has created a vast zone of oxygen depletion with adverse effects on fisheries.”

Webster, two of his Virginia Tech colleagues, and four former Virginia Tech students are among 31 authors of an article in the March 13 issue of Nature that reports the researchers’ findings on how stream systems are able to remove nitrogen.

The study, lead by Oak Ridge National Laboratory (ORNL), looked at 72 streams in the U.S. and Puerto Rico over the course of three years. Virginia Tech’s Stream Team conducted measurements on nine streams in North Carolina – including forest streams in the southern Appalachian Mountains, agricultural streams where they had to protect equipment from curious cows, and urban streams, including one that ran through a golf course and another that ran through a construction site. Eight other teams worked at the other 63 streams.

The research process meant 24-hour monitoring. “The Stream Team involvement was very important,” said Webster.

In the first phase of the study, the scientists added small amounts of a non-radioactive isotope of nitrogen to streams as nitrate, the most prevalent form of nitrogen pollution. They then measured how far downstream the nitrate traveled and how what processes removed it from the water.

The scientists found that the nitrate was taken up from stream water by algae and microorganisms. In addition, a fraction was permanently removed from streams by denitrification, a bacterial process that converts nitrate to nitrogen gas, which harmlessly joins an atmosphere already predominantly composed of nitrogen gas.

In the second phase of the study, the scientists developed a model that predicts nitrate removal as water flows through small streams and into larger streams and rivers. “Our model showed that the entire stream network is important in removing pollution from stream water,” said Patrick Mulholland, lead author of the study, a member of ORNL’s Environmental Sciences Division, and a faculty member at the University of Tennessee. “In addition, the effectiveness of streams to remove nitrate was greatest if the streams were not overloaded by pollutants such as fertilizers and wastes from human activities.”

The largest removal occurred when nitrate entered small healthy streams and traveled throughout the network before reaching large rivers. The scientists concluded from their research that streams and rivers are effective filters that help reduce the amount of nitrate pollution exported from landscapes and thereby reduce eutrophication problems, Webster said.

Authors of the article, “Stream denitrification across biomes and its response to anthropogenic nitrate loading,” are Mulholland; Ashley M. Helton and Geoffrey C. Poole of the University of Georgia (UGA); Robert O. Hall Jr. of the University of Wyoming; Stephen K. Hamilton of Michigan State University; Bruce J. Peterson of Marine Biological Laboratory at Woods Hole; Jennifer L. Tank, a Virginia Tech Ph.D. graduate now at the University of Notre Dame; Linda R. Ashkenas of Oregon State University; Lee W. Cooper of the University of Tennessee; Clifford N. Dahm of the Univesity of New Mexico; Walter K. Dodds of Kansas State University, Stuart E. G. Findlay of the Institute of Ecosystem Studies, Millbrook, NY; Stanley V. Gregory of Oregon State; Nancy B. Grimm of Arizona State University; Sherri L. Johnson of the U.S. Forest Service, Corvallis, Ore.; William H. McDowell of the University of New Hampshire; Judy L. Meyer of UGA; H.Maurice Valett, associate professor of biological sciences at Virginia Tech; Webster; Clay P. Arango and Jake J. Beaulieu of Notre Dame; Melody J. Bernot of Ball State University; Amy J. Burgin of Michigan State; Chelsea L. Crenshaw, a Virginia Tech master’s of science graduate now at the University of New Mexico; Laura Taylor Johnson, who was a Virginia Tech undergraduate and is now at Notre Dame, B. R. (Bobbie) Niederlehner, laboratory specialist at Virginia Tech; Jonathan M. O’Brien of Michigan State; Jody D. Potter of the University of New Hampshire; Richard W. Sheibley of Arizona State; Daniel J. Sobota, who was a Virginia Tech undergraduate now at Oregon State; and Suzanne M. Thomas of Woods Hole.

There were many more people involved than even the list of co-authors reflects, Webster said. “This project was part of collaboration among a group of people who have worked together since 1995,” he said. “The undergraduate research with the Stream Team at Virginia Tech has been important in guiding students toward graduate school and careers.”

The National Science Foundation funded the research. The authors also thanked the U.S. Forest Service, National Park Service, and many private landowners for permission to conduct experiments on their lands.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.biol.vt.edu/research/streamteam/

More articles from Ecology, The Environment and Conservation:

nachricht 5000 tons of plastic released into the environment every year
12.07.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Climate impact of clouds made from airplane contrails may triple by 2050
27.06.2019 | European Geosciences Union

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>