Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Backpacking flying lemurs reveal their gliding secrets

08.02.2008
A researcher from the Royal Veterinary College, working with colleagues from the University of California at Berkeley and the National University of Singapore, has documented in detail the gliding behaviour of the Malayan colugo in the wild, for the first time, using a novel measurement technique.

The development of a custom-designed three dimensional acceleration sensing 'backpack' has enabled scientists to examine the gliding and landing behaviour of a largely unknown nocturnal mammal in its natural habitat. The study, published today in the journal Proceedings of the Royal Society B, has provided important information which improves our understanding of the behaviour and biomechanics of gliding animals, and could aid in the design of flexible winged aircraft, like hang-gliders or micro-air vehicles.

Malayan colugos are incredible animals. They resemble very large flying squirrels, yet are a cousin to primates (adults measure around 30-40 cms long) with wings of skin between their hands and feet that are the size of a large doormat when extended.

"Despite being common throughout their natural range the Malayan colugo is quite poorly understood because it's hard to measure things about an animal that moves around at night, lives 30 metres up a tree, and can glide 100 metres away from you in an arbitrary direction in 10 seconds," said Andrew Spence, RCUK research fellow in biomechanics at the Royal Veterinary College, who teamed up with colleagues Greg Byrnes and Norman Lim. "Our new sensing backpacks have given us an insight into the behaviour of these fascinating creatures and we can now use this new technology to learn more about other inaccessible and understudied animals in the future."

The researchers were able to prove that the colugo can alter the aerodynamic forces acting upon it in flight, in order to reduce the effect of landing forces, and thus limit risk of injury. The creatures are able to glide at a steady speed and as they come in for landing they appear to be able to do a very precise manoevre that slows their speed and simultaneously orientates them correctly for spreading the impact of landing across all four limbs. The researchers were able to demonstrate a drastic reduction in landing forces for glides longer than about two seconds, where colugos are able to perform a parachute-like behaviour and re-orient themselves. This reduction in impact forces over long gliding distances has been predicted from aerodynamic theory, but until now scientists have not been able to demonstrate it conclusively in the wild.

By combining tiny microelectronic sensors and memory devices, such as the acceleration sensors that are used in automobile airbags and the Nintendo Wii controller, with memory chips founds in devices like the Ipod, the researchers were able to design miniature 'backpacks' that could be adhered to the colugo to register its movement. The researchers, working in the rainforests of Singapore and partly funded by the Singapore Zoological Gardens, were able to carefully catch the nocturnal adult colugos by hand whilst they were resting low on trees during the day. They shaved a small patch of fur off the animal, stuck the backback to its exposed skin using a surgical glue and released the animals back in the wild. Colugos, which can weigh up to 2 kg, were able to wear the sensors and glide uninhibited for several days before the adhesive naturally fails and the backpack falls to the ground. The backpacks were then recovered using a radio receiver.

Becci Cussens | alfa
Further information:
http://publishing.royalsociety.org/index.cfm?page=1087

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>