Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Islands Fuel Productivity and Carbon Sequestration Through Natural Iron Fertilization

02.02.2009
An experiment to study the effects of naturally deposited iron in the Southern Ocean has filled in a key piece of the puzzle surrounding iron’s role in locking atmospheric carbon dioxide (CO2) in the ocean.

The research, conducted by an international team led by Raymond Pollard of the National Oceanography Centre, Southampton, and included Matthew Charette, a marine chemist at the Woods Hole Oceanographic Institution (WHOI), found that natural iron fertilization enhanced the export of carbon to the deep ocean. The research was published January 29, 2009, in the journal Nature.

Scientists have generally accepted the fact that biological productivity in large areas of the Southern Ocean is limited by the supply of iron, an important micronutrient for phytoplankton. However, downstream of ocean islands in this study area, massive phytoplankton blooms have been observed, leading to the idea that the islands themselves are somehow fertilizing the ocean with iron. The team showed that this natural iron fertilization enhanced phytoplankton growth and productivity and the amount of carbon exported from the surface layer (100 meters) by two to three times. Moreover, they found that the amount of carbon stored at 3,000 meters and in the sediment was similarly two to three times higher beneath the natural fertilized region than for the nearby iron-poor region.

“This work demonstrated for the first time that Southern Ocean phytoplankton blooms fueled by natural sources of iron have the potential to sequester carbon in the deep ocean,” said Charette.

The team conducted their experiment in 2004-2005 on the seas around the Crozet Islands and Plateau at the northern boundary of the Southern Ocean, about 1,400 miles (2,200 kilometers) southeast of South Africa. These seas provided a natural laboratory, because each spring the waters north of Crozet experience an enormous bloom containing billions of individual phytoplankton and covering 120,000 square kilometers (the size of Ireland). In contrast, the area south of Crozet experiences only a small, short bloom later in the season.

“Our first question was, ‘where does the iron come from?’” said Charette. “Airborne dust wasn’t the solution — there isn’t enough exposed soil on Crozet for winds to carry iron from the island to the deep water where the bloom occurs. While other studies concluded that upwelling from the deep ocean was the main source of the iron, we wanted to test the hypothesis that the iron was coming from the island itself and the iron-rich sediments in the shallow water and the plateau area around it.”

Since the currents move from south to north over Crozet, the researchers reasoned that iron could be entrained in the water column as it flows over the plateau. First, they needed a way to understand how long it would take iron to travel from the island’s shore to the bloom site and if the rate of supply was enough to kick-start and sustain the bloom for several months. Iron concentrations in the water wouldn’t tell them where it came from, so the team sampled waters around Crozet looking for naturally-occurring radium isotopes, which, like iron, originate in the sediments and can therefore be used to quantify the amount of iron that the islands and surrounding sediments can supply to the bloom area. The decaying isotopes provided a built-in clock for the investigators to determine how quickly the water moves over the plateau and into deeper water. The distribution of radium in the water column demonstrated that the source of the iron was the island and the sediments in the shallow water around it and the plateau.

A second question the team sought to answer was whether the differences in the blooms between the north and south sides of Crozet would result in greater amounts of carbon held in the deep ocean. Using sediment traps and sediment cores, the researchers uncovered the first evidence that carbon deposited at 3,000 meters and in the sediment was two to three times higher beneath the natural fertilized region than for the nearby iron-poor region. In addition, the sediment record shows that this has been so throughout the Holocene (about 10,000 years ago until present).

In recent years, schemes to fight global warming have included sequestering carbon in the deep ocean by fertilizing the ocean with iron to artificially induce plankton blooms. As public interest in these ideas has increased, the authors point out that the amount of carbon sequestered in the deep ocean for a given input of iron falls far short of previous geoengineering estimates, “with significant implications for proposals to mitigate the effects of climate change through purposeful addition of iron to the ocean,” wrote lead author Pollard.

Support for this project came from the Natural Environment Research Council and the National Science Foundation.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment.

Stephanie Murphy | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>