Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mining can damage fish habitats far downstream, study shows

26.11.2014

Anglers across the nation wondering why luck at their favorite fishing spot seems to have dried up may have a surprising culprit: a mine miles away, even in a different state.

Scientists at Michigan State University (MSU) have taken a first broad look at the impacts of mines across the country- and found that mining can damage fish habitats miles downstream, and even in streams not directly connected to the mines.


In this image, acid is seeping from a Kentucky coal mine.

Credit: Wesley Daniel, Michigan State University


The figure shows coal mines (marked with an "x") and mineral minds (black dots) in the three study ecoregions. Characteristics of the Northern Appalachian (NAP), Southern Appalachian (SAP) and Temperate Plains (TPL) ecoregions. 892 Ecoregion area is from US EPA's National Wadeable Streams Assessment (US EPA, 2006), and total stream length within each 893 ecoregion was determined from the NHDPlusV1 stream layer. Total number of mineral mines is from USGS Mineral Resources 894 Program (USGS, 2003), and total number of coal mines (minor and major) is from USTRAT database (USGS, 2012). Highest mine 895 density was calculated for network catchments. Average percentages of agricultural and urban land use and impervious surface within 896 each region were derived from the 2001 NLCD.

Credit: Wesley Daniel, Michigan State University

The work is published in this week's issue of the journal Ecological Indicators.

"We've been surprised that even a single mine in headwaters might influence larger rivers miles downstream," said Wesley Daniel, a research associate at Michigan State University. "Mines have a much stronger influence on fishes than has been assumed. It's important, when considering the location of a new mine, to not just look local - but look way downstream."

Mining occurs in every state for a variety of natural resources - such as coal, precious metals, pebbles, sand and salt. Mining disrupts the environment around it, Daniel said. It can add sediments and chemicals to rivers, alter the flow of streams, lead to fewer forests in headwaters, and compact soil - all of which can change fish habitats.

And what happens to the river or stream near the mine flows downstream and can wreak havoc on populations of trout or bass and the smaller fishes that they prefer, far from the mine's location. The study looked at areas throughout the eastern United States typically known for mining, such as Appalachia, but also included areas where little mining research has been done, such as Iowa and Illinois

Daniel works in the lab of Dana Infante, associate professor of fisheries and wildlife who studies the way landscape and land use affect water. Colleagues in her lab recently developed an algorithm capable of crunching the mountains of data that tell the connected stories of the nation's streams and rivers.

That algorithm has allowed Daniel to take a long look at how extensive the effects of mines on rivers can be. His conclusion calls mines a "regional stress" and cites the example of pollutants from a mine in a headwater stream in Kentucky disrupting the breeding grounds of bass in Tennessee rivers.

While large rivers can dilute the damage a mine may do, the small streams that feed into a watershed may be much more fragile.

"The quality of headwater streams will determine quality of rivers," Daniel said. "The condition of small streams that flow into larger rivers will affect downstream fish communities. Everything is cumulative -- again and again we can see that the effects of one mine can be associated with altered fish communities."

Along with Daniel and Infante, "Characterizing coal and mineral mines as a regional source of stress to stream fish assemblages" was written by Robert Hughes at Amnis Opes Institute; Yin-Phan Tsang, Daniel Wieferich, Kyle Herreman, Arthur Cooper and William Taylor at MSU; Peter Esselman at the U.S. Geological Survey Great Lakes Science Center in Ann Arbor, Mich.; and Lizhu Wang of the International Joint Commission Great Lakes Regional Office in Detroit.

Infante, Tsang, Esselman and Taylor are affiliated with the MSU Center for Systems Integration and Sustainability, an interdisciplinary research center that works in the innovative new field of coupled human and natural systems to find sustainable solutions that both benefit the environment and enable people to thrive.

The research was funded by the U.S. Fish and Wildlife Service and the U.S. Geological Survey.

Sue Nichols | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Northeast-Atlantic fish stocks: Recovery driven by improved management
04.02.2019 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Exotic spiraling electrons discovered by physicists

19.02.2019 | Physics and Astronomy

Gearing up for 5G: A miniature, low-cost transceiver for fast, reliable communications

19.02.2019 | Information Technology

Unraveling materials' Berry curvature and Chern numbers from real-time evolution of Bloch states

19.02.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>