Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No Longer Pining for Organic Molecules to Make Particles in the Air

26.01.2011
New work will help researchers refine atmospheric weather, climate models

The fresh scent of pine has helped atmospheric scientists find missing sources of organic molecules in the air -- which, it could well turn out, aren't missing after all. In work appearing in this week's Proceedings of the National Academy of Sciences Early Edition Online, researchers examined what particles containing compounds such as those given off by pine trees look like and how quickly they evaporate. They found the particles evaporate more than 100 times slower than expected by current air-quality models.

"This work could resolve the discrepancy between field observations and models," said atmospheric chemist Alla Zelenyuk. "The results will affect how we represent organics in climate and air quality models, and could have profound implications for the science and policy governing control of submicron particulate matter levels in the atmosphere."

Zelenyuk and colleagues at the Department of Energy's Pacific Northwest National Laboratory were able to measure evaporation from atmospheric particles in a much more realistic manner than ever before. This allowed them to show that they are not liquids, as has been assumed for two decades, and to get an accurate read on how fast these particles evaporate. What researchers previously thought takes seconds actually takes days.

Airy Organics

Secondary organic aerosols are tiny bits of chemically modified organic compounds floating in the air. They absorb, scatter or reflect sunlight, and serve as cloud nuclei, making them an important component of the atmosphere.

For a couple of decades, researchers have interpreted laboratory and field measurements under the assumption that these particles are liquid droplets that evaporate fast, which is central to the way these particles are modeled. However, to this day researchers have failed to explain the high amounts observed in the real atmosphere. The never-ending search for extra sources of organics has been frustrating for scientists studying these aerosols.

To re-examine the assumption, researchers at PNNL used equipment that could study the particles under realistic conditions. Zelenyuk developed a sensitive and high-precision instrument called SPLAT II that can count, size and measure the evaporation characteristics of these particles at room temperature. Research and development for SPLAT II occurred partly in EMSL, DOE's Environmental Molecular Sciences Laboratory at PNNL.

SPLAT Surprises

First, the researchers created secondary organic aerosol particles in the lab by oxidizing alpha-pinene, the molecule that makes pine trees smell like pine. Oxidation is the same thing that happens to iron when it rusts, and happens a lot in the atmosphere when aerosols come into contact with gases such as ozone, which is a pollutant when it is low in the atmosphere.

For comparison, the researchers also made particles from other, well-understood organic molecules that are known to form solids or liquid droplets, such as one called DOP. Lastly, they allowed these other organic molecules and the pine-scented SOA particles to mingle to simulate what likely happens in the outdoors.

Monitoring the various particles with SPLAT II for up to 24 hours, the research team found that DOP particles behaved as expected. Organics evaporated from the particles quickly, and faster if the particle was smaller, which is how liquid particles evaporate.

But the pinene-based particles did not. About 50 percent of their volume evaporated away within the first 100 minutes. Then they clammed up, and only another 25 percent of their volume dissipated in the next 23 hours. In addition, this fast-slow evaporation occurred similarly whether the particle was big or small, indicating the particles were not behaving like a liquid.

This lack of evaporation could account for the inability of scientists to find other sources of atmospheric organics. "Our findings indicate that there may, in fact, be no missing SOA," said Zelenyuk.

Slowing Spectators

In the world, the SOAs from pinene co-exist with other organic molecules, and some of these slam onto the particle and coat it. Experiments with the co-mingled SOAs and organic compounds showed the researchers that coated particles evaporate even slower than single-source SOA.

Zelenyuk then tested how close to reality their lab-based SOAs were. Using air samples gathered in Sacramento, Calif., the team found the behavior of atmospheric SOAs (whether from trees and shrubs or pollution) paralleled that of the co-mingled pinene-derived SOAs in the lab and did not behave like liquids.

The results suggest that in the real atmosphere, SOA evaporation is so slow that scientists do not need to include the evaporation in certain models. The researchers hope that incorporating this information into atmospheric models will improve the understanding of aerosols' role in the climate.

More on http://www.emsl.pnl.gov/news/viewArticle.jsp?articleId=106">SPLAT II

More on the Sacramento CARES campaign

Reference: Timothy D. Vaden, Dan Imre, Josef Beránek, Manish Shrivastava, and Alla Zelenyuk, On the Evaporation Kinetics and Phase of Laboratory and Ambient Secondary Organic Aerosol, Proc Natl Acad Sci U S A, Early Edition online the week of January 24, DOI 10.1073/pnas.1013391108 (http://www.pnas.org/cgi/doi/10.1073/pnas.1013391108).

This work was supported by the U.S. Department of Energy Office of Science.

EMSL, the Environmental Molecular Sciences Laboratory located at Pacific Northwest National Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science. EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. EMSL’s technical experts and suite of custom and advanced instruments are unmatched. Its integrated computational and experimental capabilities enable researchers to realize fundamental scientific insights and create new technologies. EMSL's Facebook page.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,900 staff, has an annual budget of nearly $1.1 billion, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, LinkedIn and Twitter.

Mary Beckman | Newswise Science News
Further information:
http://www.pnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Plant seeds survive machine washing - Dispersal of invasive plants with clothes
11.09.2018 | Gesellschaft für Ökologie e.V.

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Why it doesn’t get dark when you blink

25.09.2018 | Life Sciences

Genome Duplication Drives Evolution of Species

25.09.2018 | Life Sciences

Desert ants have an amazing odor memory

25.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>