Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key species of algae shows effects of climate change over time

15.01.2014
Historical comparison of competition among algae in waters around the Pacific Northwest provides more evidence for increased ocean acidification

A study of marine life in the temperate coastal waters of the northeast Pacific Ocean shows a reversal of competitive dominance among species of algae, suggesting that increased ocean acidification caused by global climate change is altering biodiversity.

The study, published online January 15, 2014, in the journal Ecology Letters, examined competitive dynamics among crustose coralline algae, a group of species living in the waters around Tatoosh Island, Washington. These species of algae grow skeletons made of calcium carbonate, much like other shelled organisms such as mussels and oysters.

As the ocean absorbs more carbon dioxide from the atmosphere, the water becomes more acidic. Crustose coralline algae and shellfish have difficulty producing their skeletons and shells in such an environment, and can provide an early indicator of how increasing ocean acidification affects marine life.

"Coralline algae is one of the poster organisms for studying ocean acidification," said lead study author Sophie McCoy, a PhD candidate in the Department of Ecology and Evolution at the University of Chicago. "On one hand, they can grow faster because of increased carbon dioxide in the water, but on the other hand, ocean acidification makes it harder for them to deposit the skeleton. It's an important tradeoff."

Scientists have been studying Tatoosh Island, located off the northwestern tip of Washington state, for decades, compiling a rich historical record of ecological data. In this study, McCoy and Cathy Pfister, professor of ecology and evolution at the University of Chicago, repeated experiments conducted in the 1980s by University of Washington biologist Robert Paine. McCoy transplanted four species of crustose coralline algae to test sites to study how today's ocean has changed how they compete with each other.

In the previous experiments, one species, Pseudolithophyllum muricatum, was clearly dominant, "winning" almost 100 percent of the time over the other three species. In the current set of experiments, P. muricatum won less than 25 percent of the time, and no species proved dominant. McCoy called this new competitive environment "rock, paper, scissors dynamics," in which no species has a clear advantage.

McCoy said that in the past, P. muricatum owed its dominance to being able to grow a much thicker skeleton than other species. Historical data show that in the 1980s it grew twice as thick as its competitors, but now P. muricatum no longer enjoys that advantage. Measurements from another recent study by McCoy in the Journal of Phycology show that it now grows half as thick on average, or roughly equal to the other species.

This decrease in thickness and loss of competitive advantage is most likely due to lower pH levels recorded over the last 12 years in the waters around Tatoosh, a measure of ocean acidification.

"The total energy available to these organisms is the same, but now they have to use some of it dealing with this new stress," she said. "Some species are more affected than others. So the ones that need to make more calcium carbonate tissue, like P. muricatum, are under more stress than the ones that don't."

McCoy said it's crucial to continue studying the effects of ocean acidification in a natural context like Tatoosh Island instead of in the laboratory.

"This study shows different dynamics than what other people have found in lab studies," she said. "Field sites like Tatoosh are unique because we have a lot of historical ecological data going back decades. I think it's really important to use that in nature to understand what's going on."

The National Science Foundation, the Department of Defense, the Achievement Rewards for College Scientists Foundation, the Phycological Society of America, the Geological Society of America and the University of Chicago provided funding for this study.

About the University of Chicago Medicine

The University of Chicago Medicine and its Comer Children's Hospital rank among the best in the country, most notably for cancer treatment, according to U.S. News & World Report's survey of the nation's hospitals. The University of Chicago's Pritzker School of Medicine has been named one of the Top 10 medical schools in the nation, by U.S. News' "Best Graduate Schools" survey. University of Chicago physician-scientists performed the first organ transplant and the first bone marrow transplant in animal models, the first successful living-donor liver transplant, the first hormone therapy for cancer and the first successful application of cancer chemotherapy. Its researchers discovered REM sleep and were the first to describe several of the sleep stages. Twelve of the Nobel Prize winners have been affiliated with the University of Chicago Medicine.

Visit our research blog at sciencelife.uchospitals.edu and our newsroom at uchospitals.edu/news.

Twitter @UChicagoMed
Facebook.com/UChicagoMed

Matt Wood | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>