Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019

Fungicides are worldwide used in agriculture. Large amounts of applied fungicides leak into nearby surface waters. The effects of these substances on aquatic organisms are poorly understood and not specifically addressed in the EU regulatory frameworks with respect to the protection of surface waters. Scientists at the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) have found that pollution by fungicides can have unforeseen but far-reaching consequences for the functioning of aquatic systems – like indirect effects on the development of algal blooms.

The researchers investigated whether fungicides regularly used in agriculture such as tebuconazole or azoxystrobin influence the growth of aquatic fungi. In water bodies, fungi act as decomposers, but also as pathogens or parasites of other aquatic organisms.


The research team was able to show that fungicides at concentrations similar to those found in natural water bodies drastically decreased infection of cyanobacteria by parasitic fungi.

Cyanobacteria – formerly called blue-green algae – often grow disproportionally, causing blooms that can be toxic to humans and animals. "By infecting cyanobacteria, parasitic fungi limit their growth and thus reduce the occurrence and intensity of toxic algal blooms," says IGB researcher Dr. Ramsy Agha, head of the study.

"Whereas we usually perceive disease as a negative phenomenon, parasites are very important for the normal functioning of aquatic ecosystems and can – as in this case – also have positive effects. Pollution by fungicides can interfere with this natural process”, the researcher adds.

The research team, together with colleagues from the University of Minho in Portugal, has already been able to show in other studies that fungicides have a negative effect on the growth of aquatic fungi. Like in the recent study, they investigated the interaction between parasitic fungi and their hosts in the presence of fungicides.

For example, they showed that the infection of water fleas with yeast fungi decreased under commonly occurring fungicide concentrations in the lake water.

Aquatic fungi are everywhere in the water:
There are only rough estimates of the proportion of fungi in aquatic microbial communities in the various types of water. In some freshwaters they can probably account for up to 50 percent of microorganisms with cell nuclei.

Fungi hold many important ecological roles in aquatic ecosystems; as decomposers of organic matter and as a part of the food chain. Regarding the latter, fungi are a food source for higher trophic levels.

Effect of fungicides on aquatic fungi not part of the risk assessment:
Despite their importance, aquatic fungi are not specifically addressed in the EU regulatory frameworks. To protect the ecology of waters from adverse effects of plant protection products (PPP), a prospective risk assessment is conducted by the European Food Safety Authority (EFSA) prior to authorization of active ingredients and their formulated products. The EFSA guidance document (EFSA, 2013) requires toxicity data for three taxonomic groups: plants, invertebrates and a fish species, representing a simplified vision of aquatic food chains.

One reason for the disregard of aquatic fungi in risk assessments is the lack of standardized bioassays using aquatic fungi as test species. “As the cultivation and identification of aquatic fungi in scientific labs is continuously improving, risk evaluations should consider the impact of fungicides on aquatic fungi”, says IGB researcher Prof. Dr. Justyna Wolinska, head of the working group Disease Evolutionary Ecology.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Justyna Wolinska
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
Email: wolinska@igb-berlin.de
Phone: +49(30) 64 181 686

Originalpublikation:

Ortiz-Cañavate, B. K., J. Wolinska, and R. Agha. 2019. Fungicides at environmentally relevant concentrations can promote the proliferation of toxic bloom-forming cyanobacteria by inhibiting natural fungal parasite epidemics. Chemosphere 229:18-21.

Nadja Neumann | idw - Informationsdienst Wissenschaft
Further information:
https://www.igb-berlin.de

More articles from Ecology, The Environment and Conservation:

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Protecting our climate, the environment and nature is the focus of a new communications project
04.10.2019 | IDEA TV

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>