Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epic ocean voyages of coral larvae revealed

21.08.2013
Models provide first-ever simulated glimpse into dispersal and potential effects of climate change

A new computer simulation conducted at the University of Bristol (UB) and University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science has revealed the epic, ocean-spanning journeys travelled by millimetre-sized coral larvae through the world's seas.


The pathways traveled by >14 million modeled coral larval over a one-year period using the Connectivity Modeling System developed by Dr. Claire Paris at the University of Miami. Note the empty no-man's-land that larvae have difficulty breaching -- this is the East Pacific Dispersal Barrier.

Credit: S. Wood/Univ. of Bristol

The study, published in Global Ecology and Biogeography, is the first to recreate the oceanic paths along which corals disperse globally, and will eventually aid predictions of how coral reef distributions may shift with climate change.

Coral reefs are under increasing threat from the combined pressures of human activity, natural disturbances and climate change. It has been suggested that coral may respond to these changing conditions by shifting to more favourable refuges, but their ability to do this will depend on the ocean currents.

Sally Wood, a Ph.D. candidate at UB, explains: "Dispersal is an extremely important process for corals. As they are attached to the seafloor as adults, the only way they can escape harmful conditions or replenish damaged reefs is by releasing their young to the mercy of the ocean currents."

Where these intrepid explorers end up is therefore an important question for coral reef conservation. However, tracking the movement of such tiny larvae in the vast oceans is an impossible task. "This is where computer simulation comes in," adds Wood.

Collaborating across the pond, Wood used the Connectivity Modeling System (CMS) developed by Dr. Claire Paris, associate professor of Applied Marine Physics at UM to identify the billions of paths taken. This larval migration model had been tested in a previous study against the reef-building coral Montastraea annularis in the Caribbean, where consensus between modeled estimates of genetic structure were found.

"Simulating an unprecedented number of mass spawning events from all known shallow reefs in the global ocean proved essential to identifying critical long dispersal distance events that promote the establishment of new coral colonies. What we found using the CMS are rare long distance dispersers that are thought to contribute to species persistence in isolated coral reefs, and to geographic range shifts during environmental changes," said Paris.

Some of the results yielded by the team were surprising. While the majority of simulated larvae settled close to home, others travelled as far as 9,000 km., almost the entire width of the Pacific Ocean. When considered over multiple generations, this means that corals are able to cross entire ocean basins, using islands and coastlines as 'stepping stones.' However, a few places proved too distant for all but the hardiest of larvae: Coral in the tropical eastern Pacific are almost entirely cut off from those on islands of the central Pacific by a daunting 5000 km of open ocean. Geographically isolated reefs such as these may be particularly vulnerable, as they are not stocked with external recruits as frequently.

The model captured the start of the coral larvae's journey to its survival, and further work is ongoing to complete the story. Even after overcoming the trials of the open ocean, coral larvae arriving at a suitable location must first negotiate a 'wall of mouths' to settle on the reef face, and then compete fiercely for the space to thrive and grow.

Development of the CMS was funded through the NSF-RAPID program (OCE-1048697) to CBP.

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit http://www.rsmas.miami.edu.

Paper: 'Modeling dispersal and connectivity of broadcast spawning corals at the global scale', by S. Wood, C.B. Paris, A. Ridgwell, & E.J. Hendy. Global Ecology and Biogeography (2013).

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>