Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental friendly technology to remove ink stain in paper recycling

01.09.2008
The greatest challenge in paper recycling is removal of polymeric ink and coating; and the most difficult paper is mixed office wastepaper.

Traditional deinking processes involve large quantities of chemicals which are expensive and unfriendly to the environment. A better alternative would be a technology that involves biological intervention.

The greatest challenge in paper recycling is removal of polymeric ink and coating. It was suggested that the most difficult raw material for deinking is the mixed office wastepaper especially the papers that had gone through photocopiers and laser printers.

Traditional deinking processes involve the use of large quantities of chemicals. Not only is this expensive, it causes pollution to the environment due to the excessive use of chemicals. Environmental friendly technology that exploits enzymes (biological molecules) potential has been the focus of many researches that look for lower operational cost and minimal environmental impact in paper deinking processes.

Enzymatic treatment can achieve similar effect as chemical treatment. It can even improve the deinking results without affecting the physical properties in the final paper product. Application of enzyme stable in alkaline environment has been shown in other research to be effective in increasing the brightness and reduced the ink counts of recycled paper.

A research project conducted by Universiti Malaysia Sarawak and Sarawak Forestry Corporation reported the use of a crude enzyme preparation for the enzymatic deinking of mixed office paper. The enzyme material was prepared by growing endoglucanase (enzyme use for the enzymatic treatment) producing Bacillus licheniformis BL-P7 in a liquid culture media containing sago pith waste and rice husk.

The enzymatic effect was compared to the conventional chemical treatment. The enzymatic deinking process was reported to produce better deinking effects on the mixed office paper compared to conventional chemical methods. Ink detachment from the paper fibre was facilitated by the enzymatic modification of the fibre surfaces. Furthermore, the process proved to be more effective for the removal of larger ink particles. Also, properties such as brightness, air permeability, tensile, and tear were enhanced in the handsheets preparation of the recycled mixed office paper.

Researchers : Hashimatul F.H., Hairul A.R., Andrew Wong H.H., Awg A.Sallehin A.H. (all of Universiti Malaysia Sarawak)

Nigel Lim P.T. (Sarawak Forestry Corporation)

Resni Mona | ResearchSEA
Further information:
http://www.unimas.my
http://www.researchsea.com

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>