Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental DNA uncovers biodiversity in rivers

30.08.2016

Researchers from UZH and Eawag have used “environmental DNA” to determine the biodiversity of a river. Previously, this involved collecting and identifying all the organisms living in it. Using environmental DNA, however, not only is it possible to characterize the river’s biodiversity, but also that of the surrounding landscape.

Most natural ecosystems are heavily affected by changes to the human habitat, climate change or invasive species. In order to protect these ecosystems, one needs to know which organisms live in them. Therefore, assessing the state of and change in biodiversity is central to ecology and conservation biology. However, classical methods are often only suitable for determining a subset of organisms. Moreover, they are expensive and involve collecting the organisms themselves.


Sampling of 1 liter of river water, in order to subsequently extract DNA from the organisms living in the river.

Picture: UZH


Aquatic invertebrates are making up the largest part of diversity in riverine systems.

Picture: UZH

Recently, scientists came up with the idea of collecting the DNA of organisms from environmental samples instead, such as soil or water, and determining the various species that way. All organisms constantly shed DNA into the environment, such as via feces or skin particles.

This environmental DNA is sequenced using state-of-the-art technology and subsequently matched with databases to determine the species. “This completely novel approach has the potential to revolutionize the study of biodiversity,” says Florian Altermatt, a professor at the Department of Evolutionary Biology and Environmental Studies at the University of Zurich and the Swiss Federal Institute of Aquatic Science and Technology (Eawag).

DNA from mayflies and beavers

Altermatt and his team at Eawag in Dübendorf recently provided practical evidence of this idea by collecting water at various points in the Glatt, a river in the Canton of Zurich, and subsequently extracting all the DNA. “We collected a liter of water, which meant we could extract DNA from a staggering number of species, from aquatic insects, such as mayflies, to the beaver who lives further upstream,” explains study coordinator Altermatt. DNA from thousands of organisms was compared with traditional estimates of biodiversity. This confirmed that the organisms detected actually live in this environment.

In previous studies, the authors had already demonstrated that rivers transport DNA for several kilometers. “This opens up completely novel approaches to collect information on the diversity of organisms in river systems,” says Altermatt. “We can now potentially determine biodiversity in a similar way to the chemistry of the water.” Not only do the individual water samples contain information on aquatic organisms, but also land organisms found along the river. Consequently, the scientists gained a fingerprint of the organisms living in entire catchment areas and demonstrate the potential of environmental DNA for determining the biodiversity of all animals, from aquatic insects to mammals.

Routinely determining biodiversity

The study conducted by the UZH researchers reveals that, through their unique network structure, rivers collect and transport DNA containing information on the organisms in the water and on land. As the method can be automated, it might be possible to obtain data on biodiversity in an unprecedented spatial and temporal resolution in the future. “I could imagine that the water samples currently taken by cantonal or federal authorities on a daily or even hourly basis for chemical screening could also be used to record biodiversity,” speculates Altermatt.


Literature:

Kristy Deiner, Emanuel A. Fronhofer, Elvira Mächler, Jean-Claude Walser and Florian Altermatt. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nature Communications. August 30, 2016. Doi: 10.1038/ncomms12544


Contact:

Prof. Florian Altermatt

Department of Evolutionary Biology and Environmental Studies

University of Zurich

Phone: +41 58 765 55 92 / +41 79 222 98 10

E-mail: florian.altermatt@ieu.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2016/Enviromental-DNA.html

Nathalie Huber | Universität Zürich

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>