Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conservation risk highest off coasts of Canada, Mexico, Peru and New Zealand

21.02.2012
University of British Columbia researchers have identified conservation "hot spots" around the world where the temptation to profit from overfishing outweighs the appetite for conservation.

Combining economic outlook and fisheries population growth rates for all countries currently reported to fish in the ocean, UBC fisheries researchers William Cheung and Rashid Sumaila developed a conservation risk index to reveal the economic-conservation trade-offs of fishing.

Areas with the highest risk index – those most biologically and economically vulnerable to overfishing – include the northeastern coast of Canada, the Pacific coast of Mexico, the Peruvian coast, the south Pacific (offshore of New Zealand in particular), the southern and southeastern coast of Africa, and the Antarctic region.

"This index gives us a clear guide to determine the appropriate conservation and fisheries management policy for each region," says Cheung, an assistant professor in UBC's Fisheries Centre, who presented his research during a press briefing at the Annual Meeting of the American Association for the Advancement of Science (AAAS) in Vancouver, Canada.

"The most vulnerable area may need to be protected with special management approaches – such as marine protected areas, while others may benefit from economic incentives to better manage the ecosystems – such as territorial use rights in fisheries, or TURFs," says Sumaila, professor and director of the UBC Fisheries Centre.

NB: Prof. Cheung's academic symposium, titled Whole-Ocean Economics: Global Fisheries Analysis Reveals Potential for Policy Action, is at 9:45-11:45 a.m. Feb. 20. He is available for embargoed interviews upon request at 778-837-7252.

The index can also help conservation managers use scarce resources in a targeted, efficient and effective way to ensure the conservation of seafood and marine ecosystems, Sumaila adds.

"Fishing has a major impact on marine biodiversity, causing the depletion of many species," says Cheung, who grew up in Hong Kong and focused his earlier research on fisheries in the South China Sea – one of the most over-exploited areas in the world's oceans. "I witnessed how overfishing can damage marine ecosystems and the goods and services they provide – but in order to solve the problem, we need an understanding of both biology and economics. Biology determines whether a stock is more vulnerable to fishing, while economics determines how strong the incentive is to overfish the stock now."

The conservation risk index is based on two numbers: the discount rate and intrinsic population growth rate for fisheries. The discount rate for the fisheries is how much a dollar of fish would be worth now if one were to get this dollar one year later – similar to the long-term lending interest rate of central banks. The intrinsic population growth rate is the difference between the birth and death rate.

Cheung and Sumaila used published discount rates of countries that are reported to fish in the ocean and intrinsic growth rates for major exploited fish species to calculate the conservation risk index for each half degree square area of the world's oceans (2500 square-kilometres, roughly the size of Metro Vancouver or three times the size of New York City). The higher the conservation risk index number, the more vulnerable the area is.

Visit http://www.aaas.ubc.ca and follow @ubcnews and @ubcaplaceofmind on Twitter for the latest news on research released at the 2012 AAAS Annual Meeting. For more information on the AAAS, visit http://www.aaas.org.

CONTACT:

William Cheung
UBC Fisheries Centre
Cell: 778-837-7252
Email: w.cheung@fisheries.ubc.ca
John Corry
UBC
Cell: 604-506-7441
Email: john.corry@ubc.ca

John Corry | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Ecology, The Environment and Conservation:

nachricht Lights on fishing nets save turtles and dolphins
05.12.2019 | University of Exeter

nachricht For some corals, meals can come with a side of microplastics
04.12.2019 | University of Washington

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>