Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change and mountain building led to mammal diversity patterns

06.05.2010
Travel from the tropics to the poles, and you'll notice that the diversity of mammals declines with distance from the equator. Move from lowland to mountains, and you'll see diversity increase as the landscape becomes more varied. Ecologists have proposed various explanations for these well-known "biodiversity gradients," invoking ecological, evolutionary and historical processes.

New findings by University of Michigan researchers John A. Finarelli and Catherine Badgley suggest that the elevational patterns of diversity we see today have appeared, disappeared and reappeared over Earth's history and that these patterns arise from interactions between climate change and mountain building.

The results, published online in the journal Proceedings of the Royal Society B, also have implications for conservation efforts in the face of modern-day global warming, said Finarelli, a visiting assistant professor in the Department of Geological Sciences.

In their study, focused on the Miocene Epoch, which began around 23 million years ago and ended about 5 million years ago, Finarelli and Badgley evaluated diversity for more than 400 rodent species from adjacent regions that differed in geologic history and topography. The geologically "active region," which extends from the Front Range of the Rocky Mountains to the Pacific coast, has experienced several episodes of mountain-building and volcanic activity, and as a result has a topographically complex landscape. In contrast, the relatively flat Great Plains, has been more stable geologically.

The prevailing notion has been that diversity is greater in mountainous regions than in lowlands simply because the topography is more complex. As mountains rise up, new habitats are created, and areas that once were continuous become fragmented. Such changes offer opportunities for new species to arise, increasing diversity.

But climate also enters in, the new study shows. During the Miocene, long-term, global cooling was interrupted by warm intervals. In the active region, diversity increased during a warm interval from 17 to 14 million years ago that coincided with intensified mountain building and volcanic activity, the analysis revealed. During subsequent cooling, diversity declined in the mountains and increased on the plains.

"This pattern suggests that the elevational diversity gradient arises during historical episodes associated with global warming and mountain building," said Badgley, an assistant professor in the Department of Ecology and Evolutionary Biology and a research scientist in the Museum of Paleontology and the Department of Geological Sciences. "This gradient is not a long-term feature of North American biodiversity."

Although the research focused on ancient ecosystems, the findings have implications for modern times, Finarelli said. "Based on our finding that more complex regions are more sensitive to climate change, threatened areas in mountainous regions should be a particular conservation concern, with respect to human-mediated climate change."

The work also highlights the importance of studies that merge the disciplines of paleontology and biogeography, Finarelli said. "By marrying the two subjects, we can gain a better insight into the ecological and evolutionary processes shaping the world around us."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Plant seeds survive machine washing - Dispersal of invasive plants with clothes
11.09.2018 | Gesellschaft für Ökologie e.V.

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>