Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown-led research team proposes new link to tropical African climate

15.09.2008
The Lake Tanganyika area, in southeast Africa, is home to nearly 130 million people living in four countries that bound the lake, the second deepest on Earth.

Scientists have known that the region experiences dramatic wet and dry spells, and that rainfall profoundly affects the area's people, who depend on it for agriculture, drinking water and hydroelectric power.

Scientists thought they knew what caused those rains: a season-following belt of clouds along the equator known as the Intertropical Convergence Zone (ITCZ). Specifically, they believed the ITCZ and rainfall and temperature patterns in the Lake Tanganyika area marched more or less in lockstep.

When the ITCZ moved north of the equator during the northern summer, the heat (and moisture) would follow, depriving southeast Africa of moisture and rainfall. When the ITCZ moved south of the equator during the northern winter, the moisture followed, and southeast Africa got rain.

Now a Brown-led research team has discovered the ITCZ may not be the key to southeast Africa's climate after all. Examining data from core sediments taken from Lake Tanganyika covering the last 60,000 years, the researchers report in this week's Science Express that the region's climate instead appears to be linked with ocean and atmospheric patterns in the Northern Hemisphere. The finding underscores the interconnectedness of the Earth's climate — how weather in one part of the planet can affect local conditions half a world away.

The discovery also could help scientists understand how tropical Africa will respond to global warming, said Jessica Tierney, a graduate student in Brown's Geological Sciences Department and the paper's lead author.

"It just implies the sensitivity of rainfall in eastern Africa is really high," Tierney said. "It doesn't really take much to tip it."

The researchers, including James Russell and Yongsong Huang of Brown's Department of Geological Sciences faculty and scientists at the University of Arizona and the Royal Netherlands Institute for Sea Research, identified several time periods in which rainfall and temperature in southeast Africa did not correspond with the ITCZ's location. One such period was the early Holocene, extending roughly from 11,000 years ago to 6,000 years ago, in which the ITCZ's location north of the equator would have meant that tropical Africa would have been relatively dry. Instead, the team's core samples showed the region had been wet.

Two other notable periods — about 34,000 years ago and about 58,000 years ago — showed similar discrepancies, the scientists reported.

In addition, the team found climatic changes that occurred during stadials (cold snaps that occur during glacial periods), such as during the Younger Dryas, suddenly swung rainfall patterns in southeast Africa. Some of those swings occurred in less than 300 years, the team reported.

"That's really fast," Tierney noted, adding it shows precipitation in the region is "jumpy" and could react abruptly to changes wrought by global warming.

While the scientists concluded the ITCZ is not the dominant player in shaping tropical African climate, they say more research is needed to determine what drives rainfall and temperature patterns there. They suspect that a combination of winter winds in northern Asia and sea surface temperatures in the Indian Ocean have something to do with it. Under this scenario, the winds emanating from Asia would pick up moisture from the Indian Ocean as they swept southward toward tropical Africa. The warmer the waters the winds passed over, the more moisture would be gathered, and thus, more rain would fall in southeast Africa. The theory would help explain the dry conditions in southeast Africa during the stadials, Tierney and Russell said, because Indian Ocean surface temperatures would be cooler, and less moisture would be picked up by the prevailing winds.

"What happens in southeast Africa appears to be really sensitive to the Indian Ocean's climate," Russell said.

The team examined past temperature in the region using a proxy called TEX86, developed by the Dutch contributing authors. To measure past precipitation, the researchers examined fatty acid compounds contained in plant leaf waxes stored in lakebed sediments — a relatively new proxy but considered by scientists to be a reliable gauge of charting past rainfall.

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

More articles from Ecology, The Environment and Conservation:

nachricht Fungicides as an underestimated hazard for freshwater organisms
17.09.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Study: We need more realistic experiments on the impact of climate change on ecosystems
16.09.2019 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

DNA is held together by hydrophobic forces

23.09.2019 | Life Sciences

The best of two worlds: Magnetism and Weyl semimetals

23.09.2019 | Materials Sciences

"Pheno-Inspect" accelerates plant cultivation

23.09.2019 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>