Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient environment found to drive marine biodiversity

25.11.2011
Much of our knowledge about past life has come from the fossil record – but how accurately does that reflect the true history and drivers of biodiversity on Earth?

"It's a question that goes back a long way to the time of Darwin, who looked at the fossil record and tried to understand what it tells us about the history of life," says Shanan Peters, an assistant professor of geoscience at the University of Wisconsin–Madison.

In fact, the fossil record can tell us a great deal, he says in a new study. In a report published Friday, Nov. 25 in Science magazine, he and colleague Bjarte Hannisdal, of the University of Bergen in Norway, show that the evolution of marine life over the past 500 million years has been robustly and independently driven by both ocean chemistry and sea level changes.

The time period studied covered most of the Phanerozoic eon, which extends to the present and includes the evolution of most plant and animal life.

Hannisdal and Peters analyzed fossil data from the Paleobiology Database (http://paleodb.org) along with paleoenvironmental proxy records and data on the rock record that link to ancient global climates, tectonic movement, continental flooding, and changes in biogeochemistry, particularly with respect to oxygen, carbon, and sulfur cycles. They used a method called information transfer that allowed them to identify causal relationships – not just general associations – between diversity and environmental proxy records.

"We find an interesting web of connections between these different systems that combine to drive what we see in the fossil record," Peters says. "Genus diversity carries a very direct and strong signal of the sulfur isotopic signal. Similarly, the signal from sea level, how much the continents are covered by shallow seas, independently propagates into the history of marine animal diversity."

The dramatic changes in biodiversity seen in the fossil record at many different timescales – including both proliferations and mass extinctions as marine animals diversified, evolved, and moved onto land – likely arose through biological responses to changes in the global carbon and sulfur cycles and sea level through geologic time.

The strength of the interactions also shows that the fossil record, despite its incompleteness and the influence of sampling, is a good representation of marine biodiversity over the past half-billion years.

"These results show that the number of species in the oceans through time has been influenced by the amount and availability of carbon, oxygen and sulfur, and by sea level," says Lisa Boush, program director in the National Science Foundation's Division of Earth Sciences, which funded the research. "The study allows us to better understand how modern changes in the environment might affect biodiversity today and in the future."

Peters says the findings also emphasize the interconnectedness of physical, chemical, and biological processes on Earth.

"Earth systems are all connected. It's important to realize that because when we perturb one thing, we're not just affecting that one thing. There are consequences throughout the whole Earth system," he says. "The challenge is understanding how perturbation of one thing – for example, the carbon cycle – will eventually affect the future biodiversity of the planet."

-- Jill Sakai, (608) 262-9772, jasakai@wisc.edu

Shanan Peters | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Black carbon found in the Amazon River reveals recent forest burnings
20.11.2019 | Fundação de Amparo à Pesquisa do Estado de São Paulo

nachricht Typhoons and marine eutrophication are probably the missing source of organic nitrogen in ecosystems
15.11.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>