Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of evolution of the Spanish electricity sector

21.01.2009
The current Spanish electricity model is unsustainable. Carbon dioxide (CO2) emissions are hard to control, demand shows no sign of weakening, and the country is overly dependent on imported fuel.

These are the conclusions of a team of scientists from the Institute for Research in Technology (IIT) of the University of Pontificia Comillas in Madrid, who have studied how the Spanish electricity sector would evolve in various scenarios.

The team headed by Pedro Linares, an industrial electrical engineer and a researcher at the IIT, studied the evolution of the Spanish electricity sector by simulating four different scenarios, to which they applied various industrial measures and policies that could currently be undertaken in order to achieve sustainability in the system.

“The electricity sector is responsible for a large part of total CO2 emissions – approximately 25% of the 370 million tonnes that we currently discharge into the atmosphere,” Linares tells SINC.

According to the study, which has been published in the British magazine Energy Policy, total emissions (which include CO2 and other greenhouse gases) are 63% higher than in 1990. “Our 2012 commitment under the Kyoto Protocol is to emit only 15% more than in 1990. In other words, we are a long way off being able to fulfil this objective,” says the engineer.

Electric energy in Spain today is produced primarily in thermoelectric, nuclear and hydroelectric power stations. Renewable energies, however, continue to play only a minor role (in 2005 they accounted for only 7% of total production), and development of renewables is also far off the 12% target set in the Renewable Energies Plan for 2005-2010.

Reducing consumption to achieve sustainability

The four scenarios covered by this research take various aspects of the problem into consideration – growth in demand, conventional technologies, renewable sources being used now and in the future (biomass, mini-hydraulics, wind and solar thermal), investment capacity and the CO2 emissions market, as well as the directives issued under the National Plan on emissions reductions for large combustion facilities (approved in 2007).

For example, in the BAU (business as usual) model – where demand for electricity, domestic production and CO2 emissions continue growing at the same rate as they have to date – the simulations predict that emissions by 2020 will have doubled compared to 1990 levels, and electricity sector dependency will reach 60%.

However, the results obtained by using the three other models – PS1 (power shift), PS2 and PS2n – are rather more optimistic. The PS2n model, for example, sees demand for nuclear energy falling by 50% by 2020. The three scenarios take into account policies for energy promotion and savings and the development of renewables, which would entail an increase in emission permit prices. In the PS2 and PS2n scenarios, the results point at emissions in 2020 being 37% lower than they were in 1990.

This study has made it possible to identify the elements required for change to take place, in terms of demand being reduced and, to a lesser extent, premiums being used to increase the availability and competitiveness of renewable energies.

“The potential of renewables and the prices of emissions permits are fairly realistic assumptions, even for the PS2 scenario,” Linares points out. “Unfortunately, the increase in premiums and restraints on the growth of demand are not, and not because they are unmeasurable concepts,” he adds, “but rather because these will require strong political will, and it is not clear that this exists.”

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>