Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A lake fauna in a shot-glass

12.12.2011
Danish research team leads the way for future biodiversity monitoring using DNA traces in the environment to keep track of threatened wildlife – a lake water sample the size of a shot-glass can contain evidence of an entire lake fauna.

Global biodiversity is plummeting while biologists are fighting to keep score and reliable monitoring of threatened animals remains a major challenge. The biologist toolset has changed little on this area for a hundred years - still relying on expensive expert surveys basically finding and counting the animals.

However, this situation is now set to change according to a recent study by researchers at the Natural History Museum of Denmark published as a cover story in the acclaimed scientific journal Molecular Ecology. The results of the study show that a new method can be used to monitor rare and threatened animal species from DNA traces in their freshwater environments.

The development of the innovative DNA species monitoring was accomplished by PhD student Philip Francis Thomsen and Master's students Jos Kielgast and Lars L. Iversen at Centre for GeoGenetics headed by professor Eske Willerslev.

"We have shown that the DNA detection method works on a wide range of different rare species living in freshwater - they all leave DNA traces in their environment which can be detected in even very small water samples from their habitat. In the water samples we find DNA from animals as different as an otter and a dragonfly," says Philip Francis Thomsen.

By studying the fauna of one hundred different lakes and streams in Europe with both conventional methods - counting individuals - and the new DNA-based method the research team documents that DNA detection is effective even in populations where the animals are extremely rare. The study also shows that there is a clear correlation between the amount of DNA in the environment and the density of individuals meaning that the DNA detection method can even be used to estimate population sizes. This is crucial in the monitoring of rare animals, where one often wants to know whether the population is large or small.

"The UN has agreed to halt the decline of biodiversity, but a prerequisite to do so is that we are capable of properly documenting the status of threatened species. Our new approach is a huge step forward making it cheaper and faster to monitor the endangered species, and thus prioritise efforts to the benefit of biodiversity at a broad scale," says Jos Kielgast.

The researchers have documented that DNA traces of animals are nearly ubiquitous in the freshwater environment and, as a proof-of-concept, these findings may have wider implications reaching disciplines far beyond threatened species monitoring. With DNA sequencing technology advancing at rapidly dropping costs, environmental DNA research is set to change from being merely a scientific curiosity to become an important tool in applied biology. It is for example conceivable that fishing quota may in the future be based on DNA traces rather than fish catches.

Contact information

PhD student, Philip Francis Thomsen (tel. 45-27142046)

Master's thesis student, Jos Kielgast (tel. 45-28492128), skypename: jos_kielgast

Philip Francis Thomsen | EurekAlert!
Further information:
http://www..ku.dk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>