Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synchronous linear motor with magnet-free secondary section track

09.09.2008
The 1FN6, a synchronous motor with magnet-free secondary section track, is a new addition to the Siemens series of linear motors.

The innovative motor concept has all the advantages of direct drives such as high force density, high dynamic response, good control features and outstanding precision. As the secondary section track no longer has a permanent magnet, the 1FN6 is very inexpensive, especially in the case of long traversing distances.


The motor is therefore primarily used for applications in handling and linked axes or in highly dynamic and highly precise feeding axes of water-jet and laser-beam cutting machines. It is therefore an alternative to classic drive solutions with mechanical transmission elements such as gear racks or ball screws, as well as being an alternative to other types of motor such as asynchronous linear or reluctance motors. It is also ideal for applications in which a magnet-free secondary section track is essential.

In many applications in the machine tool area, long traversing distances have to be traveled quickly and precisely. Due to the costs of permanent magnets or in applications where it is difficult to protect the secondary section track against dirt, previous linear motor concepts could not be used or could only be used to a limited extent. The new 1FN8 linear motor is a synchronous linear motor developed by Siemens with a magnet-free secondary section track.

The motor has all the qualities of a synchronous direct drive such as high precision, outstanding dynamic response, the absence of a need for maintenance, a high force density and low energy losses. At the same time, the fact that no permanent magnets are used means is it easy to install, inexpensive and very robust. Applications can now be equipped with linear motors, whose traversing distances are very long or are open. Applications with very large air gaps due to the design can also be implemented with the 1FN6.

In the case of machine tools, the 1FN6 is especially suitable for applications where water-jet or laser-beam cutting is used. Particularly in the case of handling and linking applications with very long traversing distances and requirements for robust components, the linear motor is an alternative to classic linear drive systems with gear racks or belts. Thanks to its modular design, the motor can be adapted to meet the special requirements of an application. For the traversing distance, any number of secondary sections can be mounted next to each other. In addition, several primary sections can be operated on a secondary section track.

The first delivery stage of the 1FN6 linear motor is designed as a self-cooling version for the power range with a maximum force of 880 N to 7920 N. Linear motors of the 1FN6 series are designed for operation with the Sinamics S120 drive system. Configuration is carried out with the Tool Sizer, as is usual for the Sinamics drive family. Due to the connectors fitted to the front, a drive is created that is ready for use within a very short time thanks to its prefabricated power and signal cables.

Volker M. Banholzer | Siemens Industry
Further information:
http://www.siemens.de/linearmotoren

More articles from Machine Engineering:

nachricht More functionalities: Microstructuring large surfaces with a UV-laser system
05.07.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A factory to go
04.07.2018 | Fraunhofer Institute for Manufacturing Engineering and Automation IPA

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>