Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics meets textile engineering: faster CFRP component manufacturing with an ultrashort pulsed laser and robot

30.01.2020

Carbon fiber reinforced polymer (CFRP) components are usually assembled using fasteners. These are typically glued into the CFRP component once it has been cured and drilled. The consortium behind the CarboLase project came up with a new method, using an ultrashort pulsed laser to drill the holes for the fasteners in the textile preform with micrometer-scale accuracy. Integrating the fasteners in these high-precision cut-outs before the CFRP component is cured saves time by shortening the production process. In 2019, the project team’s efforts were rewarded with the prestigious CAMX Award in the “Combined Strength” category.

Carbon fiber-reinforced plastics (CFRP) are one of the most versatile composite construction materials. They combine the positive mechanical properties of their constituent parts – a polymer matrix reinforced with high-strength carbon fibers – to create a solution that offers high strength, high stiffness and low density.


A carbon fiber preform drilled using a USP laser beam with a star-shaped cut-out and a perfectly proportioned metal insert.

© Fraunhofer ILT, Aachen, Germany

So why are CFRPs still struggling to achieve a real breakthrough at a time of increasing concerns about energy and resource efficiency? One reason is their high production costs – and another is the difficulty of machining and processing CFRP components.

CarboLase project heralds new generation of CFRP components

In March 2017, the Fraunhofer Institute for Laser Technology ILT embarked on a project with four partners from research and industry. Under the heading “CarboLase – Highly productive, automated and tailor-made just-in-time CFRP component manufacturing”, the project received funding from the European Regional Development Fund (ERDF).

Its goal was clear: to help establish the North Rhine-Westphalian SMEs involved in the project as technology leaders and boost their long-term competitiveness on both the national and international stage. The project partners achieved this goal by simplifying the CFRP production process chain and reducing costs.

The conventional way of assembling carbon fiber-reinforced polymer components is to drill holes in the fabricated CFRP module and then glue in metal fasteners such as threaded inserts. Replacing conventional parts with lightweight components requires connections between the CFRP part and the conventional parts that are both detachable and secure.

The CarboLase project pursued a different approach by integrating the fasteners in the textile preforms. The final CFRP is then produced with an additional curing process that includes the fasteners. This can significantly shorten production process chains. However, this method only works if the cut-outs for the fasteners in the textile preform are drilled with extreme precision.

Three-pronged approach – CAMX Award for CarboLase partners

The project team developed a CFRP component manufacturing process that checked all the boxes by opting for a three-pronged approach of CNC cutting, laser processing and automated handling. They combined the technologies for these individual process steps in a single robot cell and automated all the steps in between. First, the preform is created by cutting, stacking and assembling the textiles. Next, an ultrashort pulsed (USP) laser drills high-precision cut-outs in the preforms for the metal fasteners.

The USP laser offers a good alternative to conventional manufacturing – but only if the laser is integrated in the robot cell. In a traditional set-up, the ultrashort pulses would be guided to their destination using mirrors, but this is hardly practical on a robot arm.

To tackle this problem, experts from Fraunhofer ILT and AMPHOS GmbH worked together to develop a novel technology for coupling the USP laser beam in and out. The USP laser source is connected to the scanner on the robot arm via a hollow core fiber.

On September 26, 2019, the CarboLase consortium won the prestigious CAMX Award in the “Combined Strength” category at the Composites and Advanced Materials Expo in Anaheim, California. The CAMX Awards celebrate innovations that promise to have a major influence on the future of composite materials. The jury was particularly impressed by the project team’s decision to integrate the laser right at the start of the process chain in order to reduce the number of costly and time-consuming steps downstream.

Successful results

To test the new method and demonstrate its technical feasibility, the project partners produced a demonstrator of a B-pillar component and subjected it to extensive mechanical testing, which it passed with flying colors. In a series of both pullout and torsion tests, the joints produced using the CarboLase method performed better than those in CFRP components produced by conventional means.

Thanks to the interlocking connection between the inserts and the matrix material, the CFRP components produced using this new method can withstand a maximum pullout force up to 50 percent higher than conventionally manufactured components with glued-in inserts. Depending on the component design, this improvement in mechanical performance offers the potential to reduce overall component thickness and weight.

The CarboLase method offers designers considerably more creative freedom when it comes to defining fastener size and position. Robots and scanners can move much more freely on both the meter and micron scales than static mechanical machining centers. This paves the way for efficient mass customization of CFRP components that goes beyond the current state of the art. The dynamic USP laser drilling process is of particular interest for lightweight components in the aerospace and automotive sectors, offering the potential to reduce the process and material costs of CFRP component manufacturing.

From research to industrial production

Fraunhofer ILT and AMPHOS GmbH pooled their skills to develop the USP laser technology for the CarboLase project. LUNOVU GmbH was also on board as a system integrator, helping to connect individual process steps and carrying out the integration of the sensors in the robot cell at the Institut für Textiltechnik (ITA) at RWTH Aachen University.

KOHLHAGE Fasteners GmbH & Co. KG also played a key role in the project by devising a system for the automated deployment and integration of the inserts. The ITA took charge of implementing the automated process chain for manufacturing laser-machined preforms. The project received some 2 million euros of funding from the European Regional Development Fund (ERDF) over a two-and-a-half year period.

The results of the CarboLase project will be showcased at the joint AZL booth (hall 5A, booth L97) at JEC World 2020, which will take place in Paris from March 3 to 5, 2020.

Wissenschaftliche Ansprechpartner:

Dr.-Ing. Stefan Janssen
Telephone +49 241 8906-8076
stefan.janssen@ilt.fraunhofer.de

Dipl.-Phys. Martin Reininghaus
Telephone +49 241 8906-627
martin.reininghaus@ilt.fraunhofer.de

Dr.-Ing. Sebastian Oppitz
Telephone +49 241 80-22096
sebastian.oppitz@ita.rwth-aachen.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Machine Engineering:

nachricht Additively manufactured rocket engine features an aerospike nozzle for microlaunchers
12.02.2020 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Causes and consequences of manufacturing deviations
10.01.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>