Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Running Robots

01.02.2012
A cheetah running in its natural environment is an elegant, fluid display of biomechanics. What if robots could run the same way, and be deployed for search and rescue operations in areas where conventional vehicles cannot go?

According to University of Delaware assistant professor Ioannis Poulakakis, a large fraction of the Earth’s surface remains inaccessible to conventional wheeled or tracked vehicles, while animals and humans traverse such terrain with ease and elegance. He believes that legs have the potential to extend the mobility of robots, enabling them to become useful in real-world situations, such as search and rescue.


UD's Ioannis Poulakakis is investigating control strategies in four-legged running robots like this one as part of a new National Science Foundation grant. Pictured is Scout II, a robot on which he worked while a graduate student at McGill University.

Poulakakis is the principal investigator of a three-year, $265,532 grant from the National Science Foundation (NSF) to develop a family of systematic control strategies that work together with the robot’s natural dynamics to generate fast, reliable and efficient running motions.

The project, funded under NSF’s Division of Civil, Mechanical and Manufacturing Innovation (CMMI), will focus on the running motion of quadrupeds (four-legged robots) with elastic energy storage elements such as springs.

“Biomechanics research demonstrates that springs and running are intimately related. When you run,” Poulakakis explains, “the knee of the leg that is on the ground initially bends and then extends to prepare the body for take-off. During knee bending, energy is stored in elastic elements such as tendons or muscle fibers. Then, this energy is released during knee extension, pushing the body upward and forward.”

In other words, when animals run, they "tune" their musculoskeletal system so that their center of mass appears to be moving as if following the motion of a pogo-stick.

Using this hypothesis as inspiration, Poulakakis suggests the same theory can be applied to robots because the pogo-stick is an example of a simple mechanical system that can be studied using the basic laws of physics. In particular, the proposed research involves developing similar systematic "energy-saving" controls that can replicate this natural, intuitive running phenomenon in robots through feedback design, rather than through hardware redundancy.

If successful, the work would enable quadrupeds to move reliably at high speeds, self-correct to prevent falls and mimic their animal counterpart’s running motion.

Under the grant, Poulakakis will develop:

-models of locomotion behavior;
-analytical methods to rigorously characterize cyclic motion generation and stability of quadrupedal running gaits;
-constructive control techniques and systematic control law design tools that minimize laborious, trial-and-error experimentation;
-verification procedures to test the controllers in a variety of running gaits; and

-student education and engineering research experiences for K-12 teachers designed to inspire the next generation of engineers.

Robotic quadrupeds offer unique advantages due to their enhanced stability, high-load carrying capacity and low mechanical complexity. Their ability to travel to areas deemed unsafe for humans, Poulakakis believes, may also enable legged robots to provide critical assistance in search and rescue operations, and may have potential applications in industrial, agricultural and military industries.

The fundamental results of this work, however, are expected to apply to dynamically-stable legged robots with different leg numbers and postures.

“If successful, this research effort will impact the study of many other engineered and biological systems which, like legged robots, accomplish their purpose through forceful, cyclic interactions with the environment.”

About the researcher

Ioannis Poulakakis joined UD in 2010 as an assistant professor in the Department of Mechanical Engineering. His expertise lies in formal control synthesis for hopping robot models and on intuitive control design for quarupedal running machines. He previously served as a postdoctoral associate in the Department of Mechanical and Aerospace Engineering at Princeton University.

Poulakakis earned his doctoral degree in electrical engineering systems and his master of science degree in applied mathematics from the University of Michigan, Ann Arbor. He also holds a master of engineering degree from McGill University in Montreal and a master of science in robotics and automation from the National Technical University of Athens, Greece, where he also earned his diploma in mechanical engineering.

He is the author of 23 journal publications, book chapters and refereed conference papers.

Andrea Boyle Tippett | Newswise Science News
Further information:
http://www.udel.edu

More articles from Power and Electrical Engineering:

nachricht Scientists create biodegradable, paper-based biobatteries
08.08.2018 | Binghamton University

nachricht Ricocheting radio waves monitor the tiniest movements in a room
07.08.2018 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>