Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers synthesize 'impossible' superconductor

01.10.2019

Researchers from the U.S., Russia, and China have bent the rules of classical chemistry and synthesized a "forbidden" compound of cerium and hydrogen -- CeH9 -- which exhibits superconductivity at a relatively low pressure of 1 million atmospheres. The paper came out in Nature Communications.

Superconductors are materials capable of conducting an electric current with no resistance whatsoever. They are behind the powerful electromagnets in particle accelerators, maglev trains, MRI scanners, and could theoretically enable power lines that deliver electricity from A to B without losing the precious kilowatts to thermal dissipation.


Cerium superhydride, a 'forbidden' compound.

Credit: @tsarcyanide/MIPT Press Office

Unfortunately, the superconductors known today can only work at very low temperatures (below -138 degrees Celsius), and latest record (-13 degrees Celsius) requires extremely high pressures of nearly 2 million atmospheres.

This limits the scope of their possible applications and makes the available superconducting technologies expensive, since maintaining their fairly extreme operating conditions is challenging.

Theoretical predictions suggest hydrogen as a potential candidate for room-temperature superconductivity. However, coaxing hydrogen into a superconductive state would take a tremendous pressure of some 5 million atmospheres; compare with 3.6 million atmospheres at the center of the Earth. Compressed so hard, it would turn into a metal, but that would defeat the purpose of operating at standard conditions.

"The alternative to metallizing hydrogen is the synthesis of so-called "forbidden" compounds of some element -- lanthanum, sulfur, uranium, cerium, etc. -- and hydrogen, with more atoms of the latter than classical chemistry allows for.

Thus normally, we might talk about a substance with a formula like CeH2 or CeH3. But our cerium superhydride -- CeH9 -- packs considerably more hydrogen, endowing it with exciting properties," explained an author of the study, Professor Artem R. Oganov of Skoltech and the Moscow Institute of Physics and Technology (MIPT).

As materials scientists pursue superconductivity at higher temperatures and lower pressures, one may come at the cost of the other. "While cerium superhydride only becomes superconductive once cooled to -200 degrees Celsius, this material is remarkable in that it is stable at a pressure of 1 million atmospheres -- less than what the previously synthesized sulfur and lanthanum superhydrides require.

On the other hand, uranium superhydride is stable at an even lower pressure, but needs considerably more cooling," added co-author Ivan Kruglov, a researcher at MIPT and Dukhov Research Institute of Automatics.

To synthesize their "impossible" superconductor, the scientists placed a microscopic sample of the metal cerium into a diamond anvil cell, along with a chemical that releases hydrogen when heated -- in this case with a laser. The cerium sample was squeezed between two flat diamonds to enable the pressure needed for the reaction. As the pressure grew, cerium hydrides with a progressively larger proportion of hydrogen formed in the reactor: CeH2, CeH3, etc.

The team then used X-ray diffraction analysis to discern the positions of the cerium atoms and thus indirectly reveal the structure of the new compound. The CeH9 crystal lattice is comprised by cages of 29 hydrogen atoms in a near-spherical formation. The atoms in each cage are held together by covalent bonds, not unlike those in the familiar H2 molecule of the hydrogen gas, but somewhat weaker. Each cage provides a cavity that houses one cerium atom

The advent of USPEX -- developed by Skoltech and MIPT's Artem Oganov -- and other computer algorithms predicting the crystal structure of previously unheard of "forbidden" compounds has enabled researchers to study the single-metal hydrides in minute detail. The next step is adding a third element into the mix: The triple compounds of hydrogen and two different metals are unchartered territory. Since the number of possible combinations is great, researchers are considering using AI algorithms to select the most promising candidates.

Media Contact

Varvara Bogomolova
bogomolova@phystech.edu
7-916-147-4496

 @phystech_en

https://mipt.ru/english/ 

Varvara Bogomolova | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-019-12326-y

More articles from Power and Electrical Engineering:

nachricht Energy Flow in the Nano Range
18.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Biologically inspired skin improves robots' sensory abilities (Video)
11.10.2019 | Technical University of Munich (TUM)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>