Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular assemblies created to convert water to hydrogen gas

26.08.2004


Wonder where the fuel will come from for tomorrow’s hydrogen-powered vehicles? Virginia Tech researchers are developing catalysts that will convert water to hydrogen gas. The research will be presented at the 228th American Chemical Society National Meeting in Philadelphia August 22-26, 2004



Supramolecular complexes created by Karen Brewer’s group at Virginia Tech convert light energy (solar energy) into a fuel that can be transported, stored, and dispensed, such as hydrogen gas.

The process has been called artificial photosynthesis, says Brewer, associate professor of chemistry. "Light energy is converted to chemical energy. Solar light is of sufficient energy to split water into hydrogen and oxygen gas, but this does not happen on its own; we need a catalysts to make this reaction occur."


One major challenge is to use light to bring together the multiple electrons needed for fuel production reactions. Electrons are the negatively charged particles that surround an atom’s nucleus, allowing atoms to react and form bonds.

Previous research has focused on collecting electrons using light energy. The Brewer group has gone the next step and created molecular machines that use light to bring electrons together (photoinitiated electron collection) then deliver the electrons to the fuel precursor, in this case, water, to produce hydrogen.

The researchers create a large molecular assembly called a supramolecular complex. Light signals this molecular assembly or machine to collect electrons and make them available for delivery to substrates.

Water is readily available and cheap, says Brewer, "but, so far, our compound is expensive. The goal is to make it catalytic and to couple it to oxygen production. We are working to build a supramolecular complex that will initiate the collection and movement of electrons and bonding of atoms without being destroyed in the process, so we don’t have to build another molecular machine every time we want to convert water to hydrogen." Our systems do functioning catalytically but the efficiency needs to be enhanced.

Mark Elvington, a graduate student in chemistry, will present the research, "Photochemical reactivity of mixed-metal supramolecular complexes: Applications as photochemical molecular devices," at 9:30 a.m., Wednesday, Aug. 25, at Pennsylvania Convention Center room113A. Co-authors are Brewer, Elvington, and Ran Miao, also a Ph.D. student in chemistry at Virginia Tech from Fudan University.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.chem.vt.edu/chem-dept/brewer/energyresearch.htm

More articles from Power and Electrical Engineering:

nachricht Neuron and synapse-mimetic spintronics devices developed
17.04.2019 | Tohoku University

nachricht New discovery makes fast-charging, better performing lithium-ion batteries possible
16.04.2019 | Rensselaer Polytechnic Institute

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>