Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danish researchers create worldwide solar energy model

05.07.2019

Photovoltaic installations will have a huge impact on future energy systems, so it is crucial to know their performance at local, regional and global levels. A historically accurate model has now been set up with all data made available via open license.

Solar cells are currently the world's most talked-about renewable energy source, and for any future sustainable energy system, it is crucial to know about the performance of photovoltaic systems at local, regional and global levels.


The graphic shows the total solar energy production for all European countries in the period 2013-2017. Each tiny field represents a week's energy production: The brighter the color the more energy was produced.

Credit: Assistant Professor Marta Victoria

Danish researchers have just set up an historically accurate model, and all the data has been made available for anyone who wants to use it.

Solar energy is advancing in earnest throughout the whole world. Over the past three years, more photovoltaic (PV) installations have been installed globally than any other energy source, and the annual growth rate between 2010 and 2017 was as high as 24%.

In global terms, it has been predicted that solar energy will play a similar role to wind energy in the sustainable energy systems of the future, but this requires precise models for how much energy PV systems produce.

Danish researchers have now developed these models in a major research project at the Department of Engineering, Aarhus University and the results have been published in the journal Progress in Photovoltaics.

"We've collected 38 years of global solar radiation, weather and temperature data with a spatial resolution of 40 km x 40 km for the entire globe, and compared this with historical data for photovoltaic installations in Europe. Based on this, we've made a very accurate model that, at global, regional and local levels, can tell you about the performance of PV installations in a given geography, depending on the type of facility being used.

This means we can look at not only a single installation, but energy production in entire countries or continents from PV installations. This is extremely important for the way in which the energy systems of the future can be combined to function optimally," says Assistant Professor Marta Victoria, who has been responsible for the project.

She continues:

"Generating cheap green energy is no longer a challenge. The price of PV installations has tumbled over the last 10-20 years, so we're now seeing huge investments in this particular energy source. The challenge is to link energy production from myriads of small installations across the landscape with a country's total energy demand and energy production from other sources, some of which is also linked across national borders."

The problem is also that the green energy system of the future depends on renewable energy sources, which in turn depend on the weather. This is why, according to Marta Victoria we need very accurate and detailed knowledge about energy production.

"PV installations will have a huge impact on the energy systems of the future, and planning systems based on models that do not take into account the outages in relation to the norm simply won't work. Therefore, this project has gathered very detailed data over time for the last 38 years for the entire globe, so that the model can be used anywhere," she says.

All the data in the model has been made readily available to everyone via Open Licence.

The project is part of the RE-Invest project, which is being funded by Innovation Fund Denmark, and which brings together a large number of Danish and international universities and companies to create the energy system of the future.

Media Contact

Marta Victoria
mvp@eng.au.dk
45-22-63-15-95

 @aarhusuni

http://www.au.dk 

Marta Victoria | EurekAlert!
Further information:
http://eng.au.dk/en/news-and-events/news/show/artikel/translate-to-english-danske-forskere-laver-model-for-solenergi-i-hele-verden/
http://dx.doi.org/10.1002/pip.3126

More articles from Power and Electrical Engineering:

nachricht Metalens grows up
04.12.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Diamonds in your devices: Powering the next generation of energy storage
04.12.2019 | Tokyo University of Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Dramatic transition in Streptomyces life cycle explained in new discovery

04.12.2019 | Life Sciences

Early immune response may improve cancer immunotherapies

04.12.2019 | Health and Medicine

Neurodegenerative diseases may be caused by transportation failures inside neurons

04.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>