Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban 'green' spaces may contribute to global warming

19.02.2010
This press release has been updated to reflect the correction of a spreadsheet error in the scientific paper regarding carbon dioxide emissions during lawn maintenance. The correction, published 27 March, is available as stated in "Notes for Journalists" at the end of this release.

Challenging the notion that urban “green” spaces help counteract greenhouse gas emissions, new research has found — in Southern California at least — that mowing and other lawn maintenance emit almost as much or more greenhouse gases than the well-tended grass extracts from the air.

Turfgrass lawns remove carbon dioxide from the atmosphere through photosynthesis and store it as organic carbon in soil, making them important “carbon sinks.” However, greenhouse gas emissions from fertilizer production, mowing, leaf blowing and other lawn management practices are similar to or greater than the amount of carbon stored by ornamental grass in parks, a new study shows. These emissions include nitrous oxide released from soil after fertilization. Nitrous oxide is a greenhouse gas that's 300 times more powerful than carbon dioxide, the Earth’s most problematic climate warmer.

Previous studies have documented lawns storing carbon, but this research was the first to compare carbon sequestration to nitrous oxide and carbon dioxide emissions from lawn grooming practices.

“Lawns look great — they're nice and green and healthy, and they're photosynthesizing a lot of organic carbon. But the carbon-storing benefits of lawns can be counteracted by greenhouse gas emissions,” says Amy Townsend-Small, Earth system science postdoctoral researcher at University of California, Irvine. Townsend-Small is the lead author of the study, which has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

The research results are important to greenhouse gas legislation being negotiated, Townsend-Small says. “We need this kind of carbon accounting to help reduce global warming,” the lead author says. “The current trend is to count the carbon sinks and forget about the greenhouse gas emissions, but it clearly isn't enough.”

Turfgrass is increasingly widespread in urban areas and covers 1.9 percent of land in the continental U.S., making it the most common irrigated crop.

In the study, Townsend-Small and colleague Claudia Czimczik analyze grass in four parks near Irvine, Calif. Each park contains two types of turf: ornamental lawns (picnic areas) that are largely undisturbed, and athletic fields (soccer and baseball) that are trampled a lot and replanted and aerated frequently.

The researchers took and evaluated soil samples over time to ascertain carbon storage, or sequestration, and they determined nitrous oxide emissions by sampling air above the turf. Then they calculated carbon dioxide emissions resulting from fuel consumption, irrigation and fertilizer production using information about lawn upkeep from park officials and contractors.

The study shows that nitrous oxide emissions from lawns are comparable to those found in agricultural farms, which are among the largest emitters of nitrous oxide globally.

In ornamental lawns, nitrous oxide emissions from fertilization offset just 10 percent to 30 percent of carbon sequestration. But fossil fuel consumption for management, the researchers calculate, releases about almost as much or more carbon dioxide than the plots can take up, depending on management intensity. Athletic fields fare even worse, because — due to soil disruption by tilling and resodding — they don't trap nearly as much carbon as ornamental grass but require the same emissions-producing care.

“It's unlikely for these lawns to act as net greenhouse gas sinks because too much energy is used to maintain them,” Townsend-Small concludes.

The UCI study was supported by the Kearney Foundation of Soil Science and the U.S. Department of Agriculture.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this correction.

The 22 January paper altered by the Correction can be downloaded.

Or, you may order copies of the Correction and/or the original paper by emailing your request to Peter Weiss at pweiss@agu.org, or Cathy Lawhon at clawhon@uci.edu. Please provide your name, the name of your publication, and your phone number.

Neither the Correction nor the original paper are under embargo.

News radio
UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.
Title
“Carbon sequestration and greenhouse gas emissions in urban turf”
Authors
Amy Townsend-Small and Claudia I. Czimczik: Department of Earth System Science, University of California, Irvine, Calif., USA.
Contact information for the author
Amy Townsend-Small, UC Irvine scientist. Tel: +1 (949) 824-2935, email: atownsen@uci.edu

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.uci.edu
http://www.today.uci.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>