Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Insights into the Antarctic Ice Shelf System

14.03.2018

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from the Alfred Wegener Institute, together with German and international colleagues, have collected important data along the entire glacier front of the Filchner-Ronne Ice Shelf, which will help them investigate the melting of the Antarctic ice sheet in an important region in the context of global sea-level rise from a multi-disciplinary perspective.


How the ocean‘s heat is threatening the ice shelves

Graphic: Alfred-Wegener-Institut / Martin Künsting (CC-BY4.0)

Just like any other ship, the research icebreaker Polarstern is exposed to the weather and other forces of nature. Thanks to the intensive use of high-definition satellite data, excellent weather forecasts by the ship’s meteorologists and the option of surveying the sea ice by helicopter, the crew and scientists successfully navigated the Antarctic ice, enabling the scientists around expedition leader Dr Michael Schröder from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) to explore the entire 800-kilometre-long front of the Filchner-Ronne Ice Shelf.

The scientific objective of the so-called FROST (Filchner-Ronne Outflow System Tomorrow) expedition was to gather data and samples so as to gain a better understanding of the interactions between ocean water and the Antarctic ice sheet. Inland of the enormous, floating Filchner-Ronne Ice Shelf lie the glaciers of Eastern Antarctica, whose ice masses flow northward into the Weddell Sea.

A number of factors dictate the flow rate, and therefore how much the glacial melt contributes to the global sea level rise. These factors include temperature and the amount of seawater that flows beneath the shelf. The ground topography determines how far the water can penetrate and spread, and the presence or absence of sea ice can reduce or increase the level of interaction with the open sea. The members of the expedition have now assessed all these factors using various scientific methods.

“The hydrographic sections are particularly valuable, as they provide data and samples that enable us to determine the age and distribution of the water masses, the diffusion path, and the amount of meltwater in the vicinity of the Filchner Trough. To date, no other ship has managed to do this in the space of one season,” enthuses AWI Oceanographer Michael Schröder from on board the ship.

The scientists were able to collect samples from the entire front of the Filchner-Ronne Ice Shelf, spanning from 61° West on the Antarctic Peninsula to 35° 30’ West in the southeast corner of the Filchner Trough. That’s an impressive 438 nautical miles, in the course of which they deployed their instruments at intervals of 15 to 20 kilometres and a total of 48 stations.

Under particular scrutiny was the Filcher Trough itself, an ocean trench in the southwest Weddell Sea: a region characterised by an intensive influx of warm water and outflow of cold water masses, which have an impact on the interaction between the shelf ice and the ocean. Here the researchers carried out a comprehensive measuring programme on sections throughout the Trough: a west-east section at 76° South, north of the A23A iceberg, which had not been possible in the past due to the adverse ice conditions.

These measurements will now supplement the data from moorings that have constantly recorded the temperature, depth, salinity and flow speed of water masses in the southern Weddell Sea for the past four years. “We were also able to repeat measurements taken during the Polarstern expeditions in 2014 and 2016 at the northern edge of the Filchner Trough, at 75° South. Comparing the results for the different years will allow us to draw conclusions on changes in the outflow system over time,” says expedition leader Schröder.

All oceanographic measurements in the Filchner Trough will complement moorings installed under the ice in the context of the FISP project (Filchner Ice Shelf Project). In turn, the oceanographic mooring data on the water column in a cavern below the ice shelf will add to those from other moorings and hydrographic sections in front of the ice shelf. In this way, the researchers can compare their measurements taken directly at the source with those taken downstream.

“At both sites we now have time series on the physical parameters for at least four years, and we plan to continue them for at least another four years. Then we’ll be able to make longer-term forecasts on the melting processes at the Filchner-Ronne Ice Shelf,” explains Dr Hartmut Hellmer, who coordinates the oceanographic section of FISP at the Alfred Wegener Institute.

During the expedition a specially designed remotely operated vehicle from the British National Oceanography Centre (NOC) and British Antarctic Survey (BAS) was used under the Antarctic ice shelf for the first time. With its help, the scientists were able to measure the temperature, salinity and depth of the water in a cavern hidden under 550-metre-thick ice (http://noc.ac.uk/news/alr-boaty-completes-first-under-ice-antarctic-mission).

The 52 researchers on the interdisciplinary expedition team also included researchers from geology, sea-ice physics, geochemistry and biology working groups. In addition to scientific endeavours, RV Polarstern also performed important logistical duties: from 28 to 30 January, the icebreaker stopped at the Alfred Wegener Institute’s Neumayer III research station to drop off fuel, scientific and logistical supplies. In early March, Polarstern continued on to the British Halley VI Research Station, where it took on cargo and passengers before heading for South America.

After entering port at Punta Arenas (Chile), the ship will change crews and be restocked with fresh provisions, fuel and scientific equipment. On 17 March Polarstern and the new crew will embark on a seven-week expedition to the Antarctic Peninsula. Following the expedition, the vessel will make another stop at Punta Arenas before returning to its homeport in Bremerhaven, tentatively on 11 June.

Please find Weekly Reports at: https://www.awi.de/nc/en/expedition/ships/polarstern/weekly-reports-rv-polarster...

Notes for Editors:

Printable images are available at: https://www.awi.de/nc/en/about-us/service/press/press-release/unique-insights-in...

Your contact person is Dr Folke Mehrtens, Dept. of Communications and Media Relations, tel. ++49 (0)471 4831-2007 (e-mail: Folke.Mehrtens(at)awi.de).

Follow the Alfred Wegener Institute on Twitter (https://twitter.com/AWI_Media) and Facebook (www.facebook.com/AlfredWegenerInstitute).

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>