Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncharted territory: 50th MERIAN expedition focuses on seafloor processes in winter

08.01.2016

The North and Baltic Sea face environmental changes resulting from climate change, increasing utilization pressure as well as changes in the catchment area. These changes and their effect on coastal ecosystems are the focus of the German research consortium Küstenforschung Nordsee-Ostsee (KüNO) that aims at providing knowledge and data for a sustainable coastal management. One KüNO research field is the analysis of processes in the sediment water transition zone, which have a major influence on marine matter cycles, especially on releasing nutrients and pollutants. On January 6, 2016, the MARIA S. MERIAN embarked on her 50th expedition to study these processes in winter for the first time.

12 of the 16 scientific participants are researchers from the Leibniz Institute for Baltic Sea Research Warnemünde (IOW); another 4 come from the Helmholtz-Zentrum Geesthacht – Centre for Materials and Coastal Research. The research cruise, which started in the port of Bremerhaven and ends in Rostock Port on January 29, 2016, is headed by chief scientist and IOW director Prof. Dr. Ulrich Bathmann.


The 50th MERIAN expedition focuses on the study of winter conditions just like the RV's maiden voyage 10 years ago in February 2006.

IOW / Neutzling

“For almost three years we have been intensively researching the seafloor of the North and Baltic Sea, its different habitats and their respec-tive ecosystem services within the KüNO programme. What happens down there in winter, however, is largely unknown,” the institute director explains the research focus of the MERIAN expedition.

Yet, adequate modelling of the processes in the sediment water transi-tion zone, which is especially active with regards to marine matter cycles, requires a com-plete set of seasonal data, Bathmann continues. “Winter is not the easiest season to embark on a research cruise, but our scientists are well prepared in every respect,” he adds.

The expedition’s scientific program includes an extensive sampling campaign at 30 stations in the North and Baltic Sea as well as in the Skagerrak / Kattegat strait that connects the two seas. Seafloor samples will be analysed with regards to sediment properties as well as to the presence and activity of zoobenthos populations during winter conditions as bioturbation plays a crucial role in sediment mixing and matter exchange between water and seabed.

This concerns important ecological factors such as oxygen, hydrogen sulfide, or nitrous oxide, as well as organic and inorganic particulate matter sedimenting from the water column. Furthermore, sediment cores will be examined for their content of heavy metals, microplastic particles and organic pollutants; experiments directly on board will be conducted to determine, whether microbial activity contributes to the bioavailability of these harmful substances also under winter conditions.

Physical effects on sediment resuspension by small-scale turbulences as a crucial component of sediment transport processes that enable the release of nutrients and other substances into the water column are monitored with vessel-mounted current profilers and a shear microstructure profiler. Specialized sea bottom landers will be deployed for the in-situ analysis of near-bottom turbulence and suspended particulate matter.

The investigations in the boundary layer of water to sediment will complemented with the classical repertoire of oceanographic analyses of the upper water column at all cruise stations to study the effect of the winter conditions on the deep water environments.

“The ultimate objective of the KüNO research on sediments in the North and Baltic Sea is to develop an atlas for the coastal region that provides a functional assessment of the different sediment provinces and habitats in terms of their ecological service for the coastal ecosystems as a basis for a sustainable management that protects especially important areas,” Ulrich Bathmann explains.

“We believe that our winter expedition, which is the last practical step of this phase in our sediment research, will provide significant progress in the understanding of matter cycle processes at the seafloor. Our findings therefore will be a valuable input for the KüNO sediment/habitat atlas,” the chief scientist concludes on the scientific programme of the current MERIAN cruise.

*Scientific contact:
Prof. Dr. Ulrich Bathmann | IOW Director | chiefscientist@merian.briese-research.de

*Further information on the research consortium “Küstenforschung Nordsee-Ostsee” (KüNO) with the projects “SECOS” and “NOAH” for characterizing sediments and habitats in the North and Baltic Sea: http://www.deutsche-kuestenforschung.de/home.html

*Press and Public Relations at IOW:
Dr. Kristin Beck | Phone: +49 (0)381 – 5197 135 | kristin.beck@io-warnemuende.de
Dr. Barbara Hentzsch | Phone: +49 (0)381 – 5197 102 | barbara.hentzsch@io-warnemuende.de

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. (http://www.leibniz-association.eu)

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>