Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiss Scientists measure glacial melting with light

03.12.2009
The glaciers in Switzerland have been melting for years. Researchers at the University of Zurich now want to know more precisely how much ice is being lost - and they are using the aid of light.

Changes in the thickness of a glacier are traditionally measured by means of wooden poles and snow-shovels. Those methods are inexpensive and can be carried out to determine the annual or even seasonal result at individual locations.


The Findel glacier lit up, superimposed with changes in the thickness up to 2009. The colors green to red represent the loss of ice, blue shows increased thickness.


Virtual, three-dimensional view of the Findel glacier near Zermatt, based on laser data from 2005, superimposed with an aerial photograph from 2006. swissphoto, with approval from swisstopo BA091673

It is, however, difficult to draw conclusions about changes in the thickness of an entire glacier or all the glaciers in the region merely on the basis of those positional measurements. The scientists now want to overcome that disadvantage of direct field measurement by applying laser technology.

Philip Jörg, a Ph.D candidate involved in this project, explains how it works: "A strongly bundled beam of light is shot from an aircraft and the time is measured that the light needs to reach the surface of the ice and bounce back to the aircraft. From this so-called "run time", the distance from the plane to the glacier can be precisely determined to within just a few centimetres". The laser data and the exact location and position of the aircraft give rise to a highly precise, three-dimensional picture of the glacier's surface.

49 million cubic metres of ice lost

Researchers at the University of Zurich carried out a corresponding campaign in October of this year with a high-resolution laser scanner at the Findel Glacier close to Zermatt. The surface model that was created was compared with the results of a first flight over the glacier in the year 2005 and now enables a conclusion on the changes in thickness and volume of the entire glacier. In those four years, the Findel Glacier has lost almost 3.5 metres of average ice thickness, and as much as 25 to 30 metres at its tongue. Overall, the glacier has lost around 49 million cubic metres of ice. If that volume of ice were melted and emptied into the Lake of Zurich, the water level of the lake would rise by about half a metre.

The next flight is planned for the forthcoming spring. The researchers anticipate new findings with regard to the spatial distribution of the winter snow coverage and its characteristics in terms of water content and reflectance. "While the politicians will be in Copenhagen in the next few days, debating a continuation of the Kyoto Protocol with specific climate targets, we are already working on the basic data of tomorrow", says Michael Zemp, the head of the project and a glaciologist at the University of Zurich.

Cooperation partners:
The research project 'Laser Scanning Experiment Oberwallis' is being carried out jointly by the Glaciology and Remote Sensing units of the University of Zurich's Geographical Department. The project will continue until 2012 and is supported by the Swiss energy utility Axpo. The laserscanning flights are carried out in cooperation with BSF Swissphoto.
Contact:
Michael Zemp, Department of Geography, University of Zurich
Tel. 0041 44 635 51 39
E-Mail: michael.zemp@geo.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>