Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subseafloor sediment in South Pacific Gyre

24.06.2009
Biomass, metabolic activity much lower than at previously explored sites

An international oceanographic research expedition to the middle of the South Pacific Gyre – a site that is as far from continents as it is possible to go on Earth's surface – found so few organisms beneath the seafloor that it may be the least inhabited sediment ever explored for evidence of life.

Yet since half of the world's ocean is composed of similar gyres, biomass and metabolic activity may be equally low in sediment throughout much of the world.

Those are among the results of a study led by University of Rhode Island oceanographer Steven D'Hondt published in the online edition of the Proceedings of the National Academy of Sciences during the week of June 22. Other URI members of the research team were Marine Reearch Scientist Robert Pockalny and Oceanography Professors Arthur Spivack and David Smith.

"We wanted to know what life is like in subseafloor sediment where you have the least amount of organic matter produced in the overlying water column," said D'Hondt, a professor at the URI Graduate School of Oceanography. "So we deliberately went where no one ever goes to compare it with sites previously studied."

Gyres are semi-still areas in the middle of the oceans where there is little wind, little current, and very little upwelling of deep water, so the water is clear and contains few nutrients. The South Pacific Gyre is the largest of Earth's gyres, encompassing an area twice the size of North America. D'Hondt describes its center as "the deadest spot in the ocean."

Because the region is so far from terrestrial sources of sediment and so few organisms live in its water, its sediment accumulates extraordinarily slowly – as few as 8 centimeters per million years.

In 2007, the international team of scientists and students collected nearly 100 cores that reached up to 8 meters below the seafloor of the South Pacific Gyre and measured the number of living cells and the amount of respiration in the sediment. Their cell counts were three to four orders of magnitude lower than have been found at similar depths outside of the gyres, and the rate of respiration was one to three orders of magnitude lower.

Equally surprising was their finding that the subseafloor community is aerobic, unlike all other previously explored sites.

"In most places, oxygen is gone just a few centimeters below the seafloor, but we found that oxygen goes many meters below the seafloor at these sites, and possibly all the way through the sediment to the underlying igneous rock," D'Hondt said.

In addition, D'Hondt said that the burial rate of organic matter was so low in the sediment that the principle food source for the microorganisms living there may be hydrogen released by the radioactive splitting of water due to the natural decay of elements in the sediment.

"As you get deeper, this hydrogen probably becomes a more important food source than buried organic matter," D'Hondt said. "And when you get deep enough, it might be the only food available. The next step in our research is to test if that is the case."

The research expedition was funded by the Ocean Drilling Program of the U.S. National Science Foundation.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>