Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snow melts faster under trees than in open areas in mild climates

14.11.2013
It’s a foggy fall morning, and University of Washington researcher Susan Dickerson-Lange pokes her index finger into the damp soil beneath a canopy of second-growth conifers. The tree cover is dense here, and little light seeps in among the understory of the Cedar River Municipal Watershed about 30 miles east of Seattle.

She digs a small hole in the leaf-litter soil, then pushes a thumb-sized device, called an iButton, about an inch beneath the surface. If all goes well, this tiny, battery-powered instrument will collect a temperature reading every hour for 11 months. Researchers hope this tool and a handful of other instruments will help them map winter temperatures throughout the watershed as they track snow accumulation and melt.


University of Washington

A mounted camera shows snow sticking in an open area, while it appears to have melted under the trees in dense, second-growth forest just behind.

This fieldwork piggybacks on a recent finding by Jessica Lundquist, a UW associate professor of civil and environmental engineering, and her lab that shows that tree cover actually causes snow to melt more quickly on the western slopes of the Pacific Northwest’s Cascade Mountains and other warm, Mediterranean-type climates around the world. Alternatively, open, clear gaps in the forests tend to keep snow on the ground longer into the spring and summer. Lundquist and her colleagues published their findings online this fall in Water Resources Research.

Common sense says that the shade of a tree will help retain snow, and snow exposed to sunlight in open areas will melt. This typically is the case in regions where winter temperatures are below freezing, such as the Northeast, Midwest and most of central and eastern Canada. But in Mediterranean climates – where the average winter temperatures usually are above 30 degrees Fahrenheit – a different phenomenon occurs. Snow tends to melt under the tree canopy and stay more intact in open meadows or gaps in a forest.

This happens in part because trees in warmer, maritime forests radiate heat in the form of long-wave radiation to a greater degree than the sky does. Heat radiating from the trees contributes to snow melting under the canopy first.

“Trees melt our snow, but it lasts longer if you open up some gaps in the forest,” Lundquist said. “The hope is that this paper gives us more of a global framework for how we manage our forests to conserve snowpack.”

For the study, Lundquist examined relevant published research the world over that listed paired snow measurements in neighboring forested and open areas; then she plotted those locations and noted their average winter temperatures. Places with similar winter climates – parts of the Swiss Alps, western Oregon and Washington, and the Sierra Nevada range in California – all had similar outcomes: Snow lasted longer in open areas.

“It’s remarkable that, given all the disparities in these studies, it did sort out by climate,” Lundquist said.

Even in the rainy Pacific Northwest, we depend on yearly snowpack for drinking water and healthy river flows for fish, said Rolf Gersonde, who designs and implements forest restoration projects in the Cedar River Watershed. Reservoirs in the western Cascades hold approximately a year’s supply of water. That means when our snowpack is gone – usually by the summer solstice – our water supply depends on often meager summer rainfall to get us through until fall, he said. Snowpack is a key component of the Northwest’s reservoir storage system, so watershed managers care about how forest changes due to management decisions or natural disturbances may impact that melting timetable.

The UW’s research in the watershed has been a beneficial partnership, researchers say. The 90,000-acre watershed is owned by the City of Seattle and provides drinking water to 1.4 million people. The area now is closed to recreation and commercial logging, but more than 80 percent of the land was logged during the early 20th century, and a large swath of dense, second-growth trees grows there now. Watershed managers have tried thinning and cutting gaps in parts of the forest to encourage more tree and plant diversity – that then leads to more diverse animal habitat – offering the UW a variety of sites to monitor.

The UW researchers acknowledge that temperature is a very broad predictor of snowmelt behavior, yet they expect their theory to hold true as they look more closely at the relationship between climate and snowmelt throughout the Pacific Northwest. They are collaborating with researchers at Oregon State University and the University of Idaho, and are ramping up a citizen science project asking hikers and snowshoers to share snow observations.

“This is really just a start,” said Dickerson-Lange, a doctoral student in Lundquist’s lab who is coordinating the citizen-science observations. “The plan is to refine this model. With climate change, a cold forest now might behave more like a warm forest 100 years from now. We want to be able to plan ahead.”

Co-authors of the recent paper are Nicoleta Cristea of UW civil and environmental engineering and James Lutz of Utah State University.

Funding for the research is from the National Science Foundation.

For more information, contact Lundquist at jdlund@uw.edu or 303-497-8257 and Dickerson-Lange at dickers@uw.edu or 253-225-9909. Lundquist is on sabbatical but is reachable by email or phone.

Michelle Ma | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>