Discovery provides evidence of iron-rich seawater much later than previously thought
The banded iron formation, located in western China, has been conclusively dated as Cambrian in age. Approximately 527 million years old, this formation is young by comparison to the majority of discoveries to date.
The deposition of banded iron formations, which began approximately 3.8 billion years ago, had long been thought to terminate before the beginning of the Cambrian Period at 540 million years ago.
"This is critical, as it is the first observation of a Precambrian-like banded iron formation that is Early Cambrian in age. This offers the most conclusive evidence for the presence of widespread iron-rich conditions at a time, confirming what has recently been suggested from geochemical proxies," said Kurt Konhauser, professor in the Department of Earth and Atmospheric Sciences and co-author. Konhauser supervised the research that was led by Zhiquan Li, a PhD candidate from Beijing while on exchange at UAlberta.
The Early Cambrian is known for the rise of animals, so the level of oxygen in seawater should have been closer to near modern levels. "This is important as the availability of oxygen has long been thought to be a handbrake on the evolution of complex life, and one that should have been alleviated by the Early Cambrian," says Leslie Robbins, a PhD candidate in Konhauser's lab and a co-author on the paper.
The researchers compared the geological characteristics and geochemistry to ancient and modern samples to find an analogue for their deposition. The team relied on the use of rare earth element patterns to demonstrate that the deposit formed in, or near, a chemocline in a stratified iron-rich basin.
"Future studies will aim to quantify the full extent of these Cambrian banded iron formations in China and whether similar deposits can be found elsewhere," says Kurt Konhauser.
###
The paper, "Earth's youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean," was published in Scientific Reports (doi: 10.103841598-018-28187-2).
Katie Willis | EurekAlert!
Further information:
https://www.ualberta.ca/science/science-news/2018/july/earths-youngest-banded-iron-formation-china-discovered
Further reports about: > Atmospheric Sciences > Oxygen > banded iron formation > geochemistry > iron-rich seawater
A Volcanic Binge And Its Frosty Hangover
21.02.2019 | Universität Heidelberg
Researchers get to the bottom of fairy circles
21.02.2019 | Georg-August-Universität Göttingen
An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.
In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....
Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.
The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...
For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.
The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...
Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens
Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...
Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light
When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...
Anzeige
Anzeige
Global Legal Hackathon at HAW Hamburg
11.02.2019 | Event News
The world of quantum chemistry meets in Heidelberg
30.01.2019 | Event News
16.01.2019 | Event News
JILA researchers make coldest quantum gas of molecules
22.02.2019 | Physics and Astronomy
Understanding high efficiency of deep ultraviolet LEDs
22.02.2019 | Materials Sciences
Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Life Sciences