Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sapphires and Rubies in the Sky

20.12.2018

Researchers at the Universities of Zurich and Cambridge have discovered a new, exotic class of planets outside our solar system. These super-Earths were formed at high temperatures close to their host star and contain high quantities of calcium, aluminum and their oxides – including sapphire and ruby.

Twenty-one light years away, in the constellation Cassiopeia, a planet by the name of HD219134 b orbits its star with a year that is just three days long. With a mass almost five times that of Earth, it is what is known as a super-Earth. Unlike our planet, however, it most likely does not have a massive core of iron, but is rich in calcium and aluminum instead.


Illustration of one of the exotic super-Earth candidates, 55 Cnc e, which are rich in sapphires and rubies and might shimmer in blue and red colors.

Illustration: Thibaut Roger

"Perhaps it shimmers red to blue like rubies and sapphires, because these gemstones are aluminum oxides, which are common on the exoplanet," says Caroline Dorn, astrophysicist at the Institute for Computational Science of the University of Zurich.

HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets, as Caroline Dorn and her colleagues at the Universities of Zurich and Cambridge now report in the British journal MNRAS.

The researchers use theoretical models to study the formation of planets and compare their results with data from observations. It is known that during their formation, stars such as the Sun were surrounded by a disc of gas and dust in which planets were born.

Rocky planets such as Earth were formed out of the solid bodies left over when the proto-planetary gas disc dispersed. These building blocks condensed out of the nebula gas as the disc cooled.

"Normally these building blocks are formed in regions where rock-forming elements such as iron, magnesium and silicon have condensed," explains Dorn. The resulting planets have an Earth-like composition with an iron core. Most of the super-Earths known so far have been formed in such regions.

More diverse than expected

But there are also regions close to the star where it is much hotter. "Many elements are still in the gas phase there and the planetary building blocks have a completely different composition," says the astrophysicist. With their models, the research team calculated what a planet being formed in such a hot region would look like.

They found that calcium and aluminum are the main constituents alongside magnesium and silicon, and that there is hardly any iron. "This is why such planets cannot have a magnetic field like Earth," explains Dorn. And since the inner structure is so different, their cooling behavior and atmospheres will also differ from those of normal super-Earths. The team therefore speak of a new, exotic class of super-Earths formed from high-temperature condensates.

"What's exciting is that these objects are completely different from the majority of Earth-like planets," says Dorn – "if they actually exist." But it's very likely they do, as the astrophysicists explain in their paper. "In our calculations we found that these planets have 10 to 20 percent lower densities than Earth," explains the first author.

The team also analyzed other exoplanets with similarly low densities. "We looked at different scenarios to explain the observed densities," says Dorn. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3,000 degrees and they would have lost this gas envelope a long time ago.

"On HD219134 b it's less hot and the situation is more complicated," explains Dorn. At first glance, the lower density could also be explained by deep oceans. But a second planet orbiting the star a little further out makes this scenario unlikely. A comparison of the two objects showed that the inner planet cannot contain more water or gas than the outer one. It's still unclear whether magma oceans can contribute to the lower density.

"We've thus found three candidates that belong to a new class of super-Earths with this exotic composition," the astrophysicist summarizes. The researchers are also correcting an earlier image of super-Earth 55 Cancri e, which had made headlines in 2012 as the "diamond in the sky".

Researchers had previously assumed that the planet consisted largely of carbon, but they had to discard this theory on the basis of subsequent observations. "We're turning the supposed diamond planet into a sapphire planet," laughs Dorn.

Wissenschaftliche Ansprechpartner:

Dr. Caroline Dorn
Institute for Computational Science, Instiut für (ICS)
University of Zurich
Phone. +41 44 63 56193
cdorn@physik.uzh.ch

Originalpublikation:

C. Dorn, J.H.D. Harrison, A. Bonsor, T. Hands: “A new class of super-Earths formed from high-temperature condensates: HD219134 b, 55 Cnc e, WASP-47 e”, MNRAS. 19 December 2018. Doi: 10.1093/mnras/sty3435

Weitere Informationen:

https://www.news.uzh.ch/en/articles/2018/Exoplanets.html

Melanie Nyfeler | Universität Zürich

More articles from Earth Sciences:

nachricht Welcome Committee for Comets
19.07.2019 | Technische Universität Braunschweig

nachricht Sea level rise: West Antarctic ice collapse may be prevented by snowing ocean water onto it
18.07.2019 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>