Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Make First Direct Observations of Biological Particles in High-Altitude Ice Clouds

19.05.2009
Airborne dust and microbial matter appear to play large role in ice formation in clouds.

A team of UC San Diego-led atmospheric chemistry researchers moved closer to what is considered the "holy grail" of climate change science when it made the first-ever direct detection of biological particles within ice clouds.

The team, led by Kerri Pratt, a Ph.D. student of atmospheric chemistry Professor Kim Prather, who also holds appointments at Scripps Institution of Oceanography as well as the Department of Chemistry and Biochemistry at UCSD, sampled water droplet and ice crystal residues at high speeds from an aircraft flying through clouds in the skies over Wyoming in fall 2007.

Analysis of the ice crystals revealed that they were made up almost entirely of either dust or biological particles such as bacteria, fungal spores and plant material. While it has long been known that microorganisms or parts of them get airborne and travel great distances, this study is the first to yield in-situ data on their participation in cloud ice processes.

Results of the Ice in Clouds Experiment - Layer Clouds (ICE-L), funded by the National Science Foundation (NSF) and the National Center for Atmospheric Research (NCAR), appear May 17 in the advance online edition of the journal Nature Geoscience.

"If we understand the sources of particles that nucleate clouds and their relative abundance, then we can determine the impact of these different sources on climate," said Pratt.

The effects of tiny airborne particles called aerosols on cloud formation have been some of the most difficult aspects of weather and climate for scientists to understand. In the climate change science field, which derives many of its projections from computer simulations of climate phenomena, the actions of aerosols on clouds represent what scientists consider the greatest uncertainty in modeling predictions for the future.

"By sampling clouds in real time from an aircraft, these investigators were able to get information about ice particles in clouds at an unprecedented level of detail," said Anne-Marine Schmoltner of the NSF's Division of Atmospheric Sciences. "By determining the chemical composition of the very cores of individual ice particles, they discovered that both mineral dust, and, surprisingly, biological particles play a major role in the formation of clouds."

Aerosols, ranging from dust, soot, sea salt to organic materials, some of which travel thousands of miles, form the skeletons of clouds. Around these nuclei, water and ice in the atmosphere condense and grow leading to precipitation. Scientists are trying to understand how they form as clouds play a critical role by both cooling the atmosphere and affect regional precipitation processes.

ICE-L was the first aircraft-based deployment of the aircraft aerosol time-of-flight mass spectrometer (A-ATOFMS) nicknamed "Shirley," which was recently developed at UCSD with funding from NSF. The ICE-L team mounted the mass spectrometer and an ice chamber run by Colorado State University researcher Paul DeMott onto a C-130 aircraft operated by NCAR and made a series of flights through a type of cloud known as a wave cloud. The researchers performed in-situ measurements of cloud ice crystal residues and found that half were mineral dust and about a third contained nitrogen, phosphorus and carbon - the signature elements of biological matter.

The second-by-second analysis speed allowed the researchers to make distinctions between residues of water droplets and ice nuclei in real-time. Ice nuclei are rarer than droplet nuclei and are more likely to create precipitation.

The A-ATOFMS also allowed the unambiguous measurement of biological particles in the cloud ice, which scientists previously concluded serve as ice nuclei based on simulations in laboratory experiments and precipitation measurements. Based on modeling and the chemical composition of measured dust, the ICE-L team was able to identify the source of the dust as Asia or Africa. "This has really been kind of a holy grail measurement for us," said Prather. "Understanding which particles form ice nuclei, which occur at extremely low concentrations and are inherently difficult to measure, means you can further understand processes that result in precipitation. Any new piece of information you can get is critical."

The findings suggest that the biological particles that get swept up in dust storms help to induce the formation of cloud ice and that their region of origin makes a difference. Prather said initial evidence is increasingly suggesting that dust transported from Asia could be influencing precipitation in North America, for example. Researchers hope to use the ICE-L data to design future studies timed to events when such particles may be playing a bigger role in triggering rain- or snowfall.

Paper co-authors include Anthony Prenni from Colorado State University, Jeffrey French and Zhien Wang of the University of Wyoming, Douglas Westphal of the Naval Research Laboratory in Monterey, Calif., Andrew Heymsfield of the National Center for Atmospheric Research and Cynthia Twohy of Oregon State University.

Note to broadcast and cable producers: University of California, San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography, at University of California, San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Robert Monroe | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>