Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers link smoke from fires to tornado intensity

03.02.2015

Can smoke from fires intensify tornadoes?

“Yes,” say researchers, who examined the effects of smoke –- resulting from spring agricultural land-clearing fires in Central America — transported across the Gulf of Mexico and encountering tornado conditions already in process in the United States.


A tornado in Shoal Creek Valley Alabama during a historic severe weather outbreak on April 27, 2011. A new study finds that a severe weather outbreak in 2011 was caused mainly by environmental conditions leading to a large potential for tornado formation and conducive to supercells, and that smoke particles intensified these conditions.

Credit: Wjalex4/Wikimedia Commons


This image shows MODIS-Aqua satellite products for 27 April 2011 over the southeast US, Central America and the Gulf of Mexico (GoM), along with tornado tracks (red solid lines, thickness indicates the magnitude of the tornado reports , thickest=5, thinnest=1) for the period from April 26-28, 2011. The background is a true color image of the surface, clouds, and smoke, with yellow markers indicating fire detections and an iridescent overlay showing aerosol optical depth (AOD). Red, green and purple colors show high (1.0), medium (0.6) and low (0.1) AOD values. The article by Saide et al. (2015) shows that the increase in aerosol loads in the GoM is produced by fires in Central America, and this smoke is further transported to the southeast US where it can interact with clouds and radiation producing environmental conditions more favorable to significant tornado occurrence for the historical outbreak on 27 April 2011. Satellite L1B (true color image), AOD, and fire detection retrievals obtained from the NASA Level 1 and Atmosphere Archive and Distribution System (LAADS); Tornado reports obtained from the NOAA Storm Prediction Center (SPC); imagery courtesy of Brad Pierce NOAA Satellite and Information Service (NESDIS) Center for Satellite Applications and Research (STAR).

Credit: Pablo Saide

The new study, accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union, examined the smoke impacts on a historic severe weather outbreak that occurred during the afternoon and evening of April 27, 2011. The weather event produced 122 tornadoes, resulted in 313 deaths across the Southeastern United States and is considered the most severe event of its kind since 1950.

The outbreak was caused mainly by environmental conditions leading to a large potential for tornado formation and conducive to supercells, a type of thunderstorm. However, smoke particles intensified these conditions, according to co-authors Gregory Carmichael, professor of chemical and biochemical engineering at the University of Iowa in Iowa City, and Pablo Saide, Center for Global and Regional Environmental Research (CGRER) post-doctoral fellow at the University of Iowa.

They say the smoke lowered the base of the clouds and increased wind shear, defined as wind speed variations with respect to altitude. Together, those two conditions increased the likelihood of more severe tornadoes. The effects of smoke on these conditions had not been previously described, and the study found a novel mechanism to explain these interactions.

“These results are of great importance, as it is the first study to show smoke influence on tornado severity in a real case scenario. Also, severe weather prediction centers do not include atmospheric particles and their effects in their models, and we show that they should at least consider it,” says Carmichael.

“We show the smoke influence for one tornado outbreak, so in the future we will analyze smoke effects for other outbreaks on the record to see if similar impacts are found and under which conditions they occur,” says Saide. “We also plan to work along with model developers and institutions in charge of forecasting to move forward in the implementation, testing and incorporation of these effects on operational weather prediction models.”

In order to make their findings, the researchers ran computer simulations based upon data recorded during the 2011 event. One type of simulation included smoke and its effect on solar radiation and clouds, while the other omitted smoke. In fact, the simulation including the smoke resulted in a lowered cloud base and greater wind shear.

Future studies will focus on gaining a better understanding of the impacts of smoke on near-storm environments and tornado occurrence, intensity and longevity, adds Carmichael, who also serves as director of the Iowa Informatics Initiative and co-director of CGRER.

The research was funded by grants from NASA, U.S. Environmental Protection Agency, National Institutes of Health, National Oceanic and Atmospheric Administration and the Fulbright-CONICYT scholarship program in Chile.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on Facebook, Twitter, YouTube, and other social media channels.

 Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL062826/abstract?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.
Title
“Central American biomass burning smoke can increase tornado severity in the U.S.”

Authors:
P. E. Saide: Center for Global and Regional Environmental Research (CGRER), University of Iowa, Iowa City, Iowa, USA;

S. N. Spak: Center for Global and Regional Environmental Research (CGRER), University of Iowa, Iowa City, Iowa, USA;

R. B. Pierce: NOAA Satellite and Information Service (NESDIS) Center for Satellite Applications and Research (STAR), Madison, Wisconsin, USA;

J. A. Otkin and T. K. Schaack: Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA;

A. K. Heidinger: NOAA Satellite and Information Service (NESDIS) Center for Satellite Applications and Research (STAR), Madison, Wisconsin, USA;

A. M. da Silva: Global Modeling and data Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA;

M. Kacenelenbogen: BAER Institute/NASA Ames, Moffett Field, California, USA;

J. Redemann: NASA Ames, Moffett Field, California, USA;

G. R. Carmichael: Center for Global and Regional Environmental Research (CGRER), University of Iowa, Iowa City, Iowa, USA.

Contact information for the authors:
Pablo Saide: pablo-saide@uiowa.edu

Greg Carmichael: +1 (319) 335-1414, gcarmich@engineering.uiowa.edu


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

University of Iowa Contact:
Gary Galluzzo
+1 (319) 384-0009
gary-galluzzo@uiowa.edu

Nanci Bompey | American Geophysical Union

More articles from Earth Sciences:

nachricht Seismic study reveals huge amount of water dragged into Earth's interior
18.12.2018 | National Science Foundation

nachricht A damming trend
17.12.2018 | Michigan State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>