Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers link methane in groundwater in Parker and Hood counties to natural sources

09.03.2017

Scientists from The University of Texas at Austin have found that high levels of methane in well water from two counties near Fort Worth are probably from shallow natural gas deposits, not natural gas leaks caused by hydraulic fracturing operations in the underlying Barnett Shale.

The research, published in the journal Groundwater, builds on previous studies on well water quality in the Barnett Shale and uses chemical and geographic evidence to tie the elevated methane level in certain water wells to methane in natural shallow deposits. J.P. Nicot, a research scientist at the Bureau of Economic Geology, a unit of the UT Jackson School of Geosciences, led the research. Collaborators include researchers from the Jackson School's Department of Geological Sciences and the University of Michigan.


Distribution of dissolved methane across the Barnett Shale play. Each small red dot represents a Barnett Shale gas well. The other colored dots represent groundwater sample locations.The map includes 18,022 gas wells and 457 sample locations, with some overlapping at this scale. The key in the bottom right shows the concentration of methane, if any, found in each water sample. The black square surrounds a high-methane area where researchers conducted in-depth analysis of groundwater samples.

Credit: J.P. Nicot The University of Texas at Austin

Methane is the primary component of natural gas. Hydraulic fracturing, or fracking, is a method of artificially producing fractures in wells thousands of feet deep to reach natural gas deposits in shale rock. Methane is also found in much shallower and smaller deposits located hundreds of feet below the ground. These deposits formed when methane from deeper sources moved toward the surface over millions of years. The shallow reservoirs in the study area are in a geologic formation called the Strawn Group.

"Over geologic time, methane has accumulated into these shallower reservoirs," Nicot explained. "These fresh-water wells are very close to these shallower reservoirs and may be the source of the methane."

The Barnett Shale, located in the Fort Worth region, is one of the largest and most productive natural gas fields in the United States. By the end of 2015, there were about 20,000 wells in the region. As production has boomed, questions have been raised about the connection between hydraulic fracturing and potentially dangerous levels of methane in some water wells, most notably wells in the Silverado neighborhood in Parker County outside of Fort Worth.

To examine the source and extent of methane in water wells, the researchers analyzed samples from more than 450 wells across 12 counties in the western Barnett Shale. The vast majority of samples--85 percent--showed very low methane levels in the groundwater of less than 0.1 milligrams of methane per liter of water. However, a cluster of 11 wells in Parker County and Hood County had methane levels above 10 milligrams per liter of water, a level that can trigger venting of well water systems to ensure the flammable gas does not become hazardous.

The Silverado neighborhood was at the epicenter of the cluster of wells containing high levels of methane. They are found in a roughly 6-by-8-mile area that also includes wells with low levels of methane.

This finding prompted the researchers to take a closer look at the cluster. Starting at the center of the cluster and working outward until no methane was detected in the water, they took samples from 58 locations and analyzed them to see where the gas originated.

"What we wanted to do was understand how much methane there is and determine the size of the high methane hotspot," Nicot said.

Methane is produced two ways: thermogenically, from the breakdown of organic material under elevated temperature and pressure; and biogenically, by microbial activity. Biogenic methane is generally generated at shallow depth. Thermogenic methane is always produced at depth, although sometimes the gas can migrate over geologic time to shallower areas.

Researchers used carbon isotope analysis to determine that the methane was thermogenic, which ruled out biogenic sources but didn't pinpoint whether the gas came from the deeper Barnett or the shallower Strawn. Additional analysis of the samples' noble gases conducted by members of the same research team and led by University of Michigan researchers linked the methane to the shallow natural gas deposits of the Strawn. The results were complemented by another of the team's studies in 2015 that found nitrogen isotopes associated with the Strawn.

"Combining alkane, noble gas and nitrogen compositions and isotope ratios allowed us to distinguish natural gas sourced from the deep Barnett Shale from the shallow Strawn Group," explained Toti Larson, a researcher at the Jackson School's Department of Geological Sciences.

In addition to chemical evidence, the researchers found a strong correlation between water well proximity to the Strawn Group and high methane levels. There is no correlation between high-methane wells and the distance to the nearest hydraulically fractured wells. The researchers also note that Parker and Hood counties have a relatively low number of hydraulic fracturing wells compared with other counties in the Barnett Shale, such as Denton, that have water wells with low methane levels.

Although the findings suggest that methane from the Strawn Group is the most likely source for the methane in water wells in Parker and Hood counties, the researchers said they can't completely rule out that some of the methane may have come from leaks caused by hydraulic fracturing operations. In fact, the researchers suggest that leaks from deep reservoirs might help explain certain cases recorded by other studies where methane levels in water wells are increasing over time and cases where methane is present in water wells where it used to be absent.

For wells where the methane origins are still questionable, the researchers suggest a more extensive sampling and analysis campaign.

###

The study was funded by Research Partnership to Secure Energy for America, a program authorized by the U.S. Energy Policy Act of 2005.

Media Contact

Anton Caputo
anton.caputo@jsg.utexas.edu
512-232-9623

 @UTAustin

http://www.utexas.edu 

Anton Caputo | EurekAlert!

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>