Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Ultrasound' of Earth's crust reveals inner workings of a tsunami factory

20.11.2007
May explain why seafloor near SW Japan generates devastating tsunamis, will help assess risk of giant tsunamis in other regions

Texas—Research announced this week by a team of U.S. and Japanese geoscientists may help explain why part of the seafloor near the southwest coast of Japan is particularly good at generating devastating tsunamis, such as the 1944 Tonankai event, which killed at least 1,200 people. The findings will help scientists assess the risk of giant tsunamis in other regions of the world.

Geoscientists from The University of Texas at Austin and colleagues used a commercial ship to collect three-dimensional seismic data that reveals the structure of Earth’s crust below a region of the Pacific seafloor known as the Nankai Trough. The resulting images are akin to ultrasounds of the human body.

The results, published this week in the journal Science, address a long standing mystery as to why earthquakes below some parts of the seafloor trigger large tsunamis while earthquakes in other regions do not.

The 3D seismic images allowed the researchers to reconstruct how layers of rock and sediment have cracked and shifted over time. They found two things that contribute to big tsunamis. First, they confirmed the existence of a major fault that runs from a region known to unleash earthquakes about 10 kilometers (6 miles) deep right up to the seafloor. When an earthquake happens, the fault allows it to reach up and move the seafloor up or down, carrying a column of water with it and setting up a series of tsunami waves that spread outward.

Second, and most surprising, the team discovered that the recent fault activity, probably including the slip that caused the 1944 event, has shifted to landward branches of the fault, becoming shallower and steeper than it was in the past.

“That leads to more direct displacement of the seafloor and a larger vertical component of seafloor displacement that is more effective in generating tsunamis,” said Nathan Bangs, senior research scientist at the Institute for Geophysics at The University of Texas at Austin who was co-principal investigator on the research project and co-author on the Science article.

The Nankai Trough is in a subduction zone, an area where two tectonic plates are colliding, pushing one plate down below the other. The grinding of one plate over the other in subduction zones leads to some of the world’s largest earthquakes.

In 2002, a team of researchers led by Jin-Oh Park at Japan Marine Science and Technology Center (JAMSTEC) had identified the fault, known as a megathrust or megasplay fault, using less detailed two-dimensional geophysical methods. Based on its location, they suggested a possible link to the 1944 event, but they were unable to determine where faulting has been recently active.

“What we can now say is that slip has very recently propagated up to or near to the seafloor, and slip along these thrusts most likely caused the large tsunami during the 1944 Tonankai 8.1 magnitude event,” said Bangs.

The images produced in this project will be used by scientists in the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), an international effort designed to, for the first time, “drill, sample and instrument the earthquake-causing, or seismogenic portion of Earth’s crust, where violent, large-scale earthquakes have occurred repeatedly throughout history.”

“The ultimate goal is to understand what’s happening at different margins,” said Bangs. “The 2004 Indonesian tsunami was a big surprise. It’s still not clear why that earthquake created such a large tsunami. By understanding places like Nankai, we’ll have more information and a better approach to looking at other places to determine whether they have potential. And we’ll be less surprised in the future.”

J.B. Bird | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>