Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The University of Arizona Launches Major Scientific Research Initiative at Biosphere 2

27.06.2007
The University of Arizona today announced a major new scientific initiative to tackle the grand challenges facing science and society, including global climate change, the fate of water and how energy travels through Earth's ecosystems.

The University will lease the 34.5-acre (14 hectare) Biosphere 2 campus in Oracle, Ariz. for a nominal annual fee to conduct such advanced research. A gift from the Philecology Foundation in Fort Worth, Texas, in conjunction with other grants and gifts, will fully support the University’s research as well as the base costs of operating the Biosphere 2 facility for three years, with the potential for funding of up to 10 years.

"UA will develop Biosphere 2 into a center for research, outreach, teaching and life-long learning about Earth, its living systems and its place in the universe," said Joaquin Ruiz, dean of UA's College of Science. "The facilities and resources at this new campus will be an inspiring place for researchers to gather and to tackle problems that science and society will face now and in the future.

"At Biosphere 2, we will address not only the problems of our current condition, but also those of the 22nd century that are still below the horizon."

UA President Robert Shelton is excited by the potential that Biosphere 2 offers.

“The generous gift from the Philecology Foundation, founded by Edward P. Bass, substantially expands the University's ability to link teaching, scholarship and creativity to the needs of Arizona and our larger global community,” President Shelton said. “Biosphere 2 will provide our faculty and students exceptional opportunities to address major environmental challenges facing Arizona and the Southwest such as global climate change, sustainability of water resources and land-use change. UA excels at the collaborative, multidisciplinary approach these global scientific issues require."

Under the UA's management, Biosphere 2 will continue as a major regional attraction and also serve as a laboratory for controlled scientific studies, an arena for scientific discovery and discussion, and a far-reaching public education center. B2 Earthscience, directed by UA Associate Professor of ecology and evolutionary biology Travis E. Huxman, will address issues of global environmental change using a multidisciplinary approach. B2 Institute, directed by UA Regents' Professor of physics and optical sciences Pierre Meystre, will conduct interdisciplinary programs to tackle scientific "Grand Challenges."

In addition, the UA will operate the popular Biosphere 2 tours. From 1991-2007, the facility had 2.3 million visitors. Biosphere 2 will serve Arizona and the public through education and outreach at all levels -- K-12 and continuing through adults -- that highlights the exceptional research programs at the UA.

B2 Earthscience Director Huxman said, "As a research facility, Biosphere 2 is unique in its spatial scale. The facility provides us a bridge between our small-scale, controlled, laboratory-based understandings of earth processes and experiments in field settings where we cannot control all environmental conditions. Biosphere 2's size allows us to do controlled experimentation at an unprecedented scale.

"A unique aspect of this facility is its ability to support experiments that will provide us the missing link between laboratory and real world."

“I salute the University’s deep commitment to conduct research in the Biosphere that will advance our understanding of the Earth, its biosphere and the impact upon it," said Ed Bass, co-founder of Biosphere 2 and president of the Philecology Foundation. “Biosphere 2 was initially created as a tool to probe the essential environmental questions we must ask in the 21st century, and I look forward with great anticipation to what UA will discover.”

The controlled-environment facility, 3.14 acres (1.27 hectares) in area, is sealed from the earth below by a 500-ton (453,600 kg) welded stainless steel liner. Ninety-one feet (28 meters) at its highest point, it has 6,500 windows that enclose a volume of 7.2 million cubic feet (204,000 cubic meters) under glass.

One initial experiment addresses key interactions between plants and water. Within the facility, the researchers will build three hill slopes, each about 32 yards (30 meters) long and 22 yards (20 meters) wide, to test how water moves down, into and across the slopes.

"Then we will introduce plants and ask how having life on a landscape changes the behavior of water, both in the air and in the soil," Huxman said. "We are interested in how plants modify their environment -- how they change the amount of time a water molecule spends in the soil and how that affects the biogeochemical reactions that happen in soil only when it is wet."

The plants, grasses and shrubs, will be typical of the desert, grassland and savannah ecosystems that cover more than one-half of Arizona and about one-third of the Earth's total land area.

The Biosphere 2 facility will allow the researchers to control and measure what enters and leaves the huge experimental chamber. A large and sophisticated array of sensors deployed throughout the chamber's atmosphere and the hill slopes will monitor environmental factors, including water, carbon dioxide, temperature, trace gases and pH.

Inside, the team will control temperature and rainfall to mimic the environmental conditions right outside the chamber. Just outside the chamber, the researchers will build replicas of the indoor hill slopes and conduct the same experiments. Mimicking the local conditions inside the chamber will let the scientists compare the gigantic indoor controlled-conditions experiment with the hill slopes outside that are exposed to natural conditions. All of these experiments will be linked to existing research projects throughout the Southwest.

"Quantifying these processes is key knowledge for managing our natural resources in periods of uncertainty now and in the future," Huxman said.

The public will be able to watch the research as it unfolds, he said. "This is one of the only research facilities that will be completely open to the public. When people go on a tour, they won't just hear a wonderful description of the Biosphere 2’s history. They will be able to watch research in action and learn what is going on moment-to-moment."

The state-of-the-art Biosphere 2 campus is located in the foothills of the Catalina Mountains, 35 miles from the UA campus. UA will manage and operate the controlled-environment facility itself, along with three conference rooms that can seat from 40 to 120 participants, a suite of 36 dual-occupancy offices, and modern housing facilities in a “village” of 28 furnished three- to five-bedroom casitas with fully equipped kitchens. The campus is fully networked.

In the 1800s, the property was part of the Samaniego's CDO Ranch. After several changes of ownership, it became a conference center in the 1960s and 1970s, first for Motorola, then for the UA. Space Biospheres Ventures bought the property in 1984 and began construction of the current facility in 1986. Human missions 1 and 2 lasted from 1991-1994. In 1994, Decisions Investments Corporation took over the property and Columbia University managed it from 1996-2003. The property was sold June 4, 2007, to CDO Ranching & Development, L.P.

Mari N. Jensen | University of Arizona
Further information:
http://www.arizona.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>