Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Researcher to Study Volcanism with Under-Ocean Sensors

07.02.2007
By recording activity where it happens under water, sensors will capture rare data

Earthquakes and volcanic activity occur when the tectonic plates that make up Earth's surface move apart or converge. While this activity is relatively easy to observe on land, it's more difficult to observe under the ocean, where most of it occurs. A University of Missouri-Columbia researcher will soon undertake a study to learn more about this process by placing sensors on a mid-ocean ridge called the East Pacific Rise.

"Right now, we can only listen from land using seismometers, or in the oceans using hydrophones, and try to find out when there is activity in a mid-ocean ridge," said Marie-Helene Cormier, assistant professor of geological sciences in MU¿s College of Arts and Science. "We might not know for a few days, and then it might take at least a week to get a ship to the site. If we want to study what's happening, it's very difficult to get accurate and timely information. Our goal is to put sensors in place so that we can record activity as it is happening. When we recover our sensors, we'll be able to study what was happening during those moments."

In mid February, Cormier and her colleagues, Spahr Webb and Roger Buck of Columbia University, will place sensors on the seafloor in multiple positions along the East Pacific Rise southwest of Mexico. The sensors will measure and record changes in the pressure of the water column above them. Cormier said the pressure of the water is expected to decrease during ridge activity because magma flows up between the two plates, creating new seafloor and raising the height of the sensors by a few inches. She and her team will collect data from the sensors while they are in place until they are removed from the ocean floor in 2009 or 2010. MU undergraduate students are expected to accompany Cormier on the research mission to learn more about geology and marine research.

"We expect there will be activity in this area while the sensors are there," Cormier said. "We'll measure, use computer models and compare data of the seascape from previous missions to this area to learn more about what's happening."

The data from this study could help scientists better understand what happens when tectonic plates move apart. This activity can cause underwater volcanic eruptions and earthquakes that result in the cycling of large quantities of seawater through the ocean floor, creating a nutrient-rich environment for bacteria and microorganisms. Cormier said the new magma and heat that come from below the earth's surface attract organisms to the new nutrient-rich, warm waters that are expelled from the seafloor.

"We want to understand more about what's happening under the oceans," Cormier said. "We can look at maps of Earth and see many details about the landforms above sea level, but we don't know nearly as much about what's under the ocean. Seventy percent of our land is under the ocean, so it's important to map out what landforms there are and understand what's happening there."

This research is supported by a National Science Foundation (NSF) grant. Through its "Research Experience for Undergraduates" initiative, the NSF also has approved some funds to assist the undergraduate students in their participation in the expedition.

Katherine Kostiuk | EurekAlert!
Further information:
http://www.oceanexplorer.noaa.gov
http:// www.ridge2000.org
http://www.missouri.edu

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>