Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The winds of change

24.01.2007
Dartmouth researchers learn that North America's wind patterns have shifted significantly in the past 30,000 years

Dartmouth researchers have learned that the prevailing winds in the mid latitudes of North America, which now blow from the west, once blew from the east. They reached this conclusion by analyzing 14,000- to 30,000-year-old wood samples from areas in the mid-latitudes of North America (40-50°N), which represents the region north of Denver and Philadelphia and south of Winnipeg and Vancouver.

The researchers report their findings online on Jan. 23 in the journal Geology, published by the Geological Society of America.

"Today in the mid-latitude zone of North America, marine moisture is transported either from the west coast by westerly winds, or from both the west and east coasts by storms," says Xiahong Feng, the paper's lead author and a professor of earth sciences. "In this study, we found evidence that during the last glacial period, about 14-36 thousand years ago, the prevailing wind in this zone was easterly, and marine moisture came predominantly from the East Coast."

Feng explains that global climate change is often manifested by changes in general atmospheric circulation, i.e. winds, and this results in changing temperature and precipitation patterns. Clues of past climates usually hint at temperature and precipitation changes, but this is the first time that changing continental wind patterns have been reconstructed.

The researchers gathered their evidence using oxygen and hydrogen isotopic compositions of cellulose extracted from ancient wood. Feng and her team interpret the historic prevailing easterlies to be a result of a growing and intensifying northern circumpolar vortex, which was influenced by the powerful Laurentide Ice Sheet, an enormous mass of ice that covered a great deal of northern North America. Under this circulation regime, the jet stream shifted southward, and as a result, the Pacific Northwest received much less marine moisture from the Pacific. This is consistent with earlier studies of vegetation in the Pacific Northwest, indicating that the region was significantly drier during the last glaciation.

Dartmouth researchers look at ancient wood to determine 30,000-year-old wind patterns.

"This study is likely to open up new avenues of research based on oxygen and hydrogen isotopes in old wood," says Feng. "Climate change involves interactions among temperature, precipitation, and wind, but until now research has rarely been able to observe or confirm prehistoric winds and their continental-scale patterns. In the future, studies using this methodology will be able to look into ancient climates through a new window, and test hypotheses about climate change mechanisms. Such studies can potentially lead to more realistic formulations of future climate scenarios and better evaluations of their plausibility."

In addition to Xiahong Feng, who also holds the Frederick Hall Professorship in Mineralogy and Geology at Dartmouth, other authors on the paper include: Allison L. Reddington, a member of the Dartmouth Class of 2004; Anthony M. Faiia, Dartmouth research associate; Eric S. Posmentier, adjunct professor of earth sciences at Dartmouth; Yong Shu, Dartmouth PhD candidate; and Xiaomei Xu, from the Earth System Science Department at the University of California, Irvine.

"This study began as Allison Reddington's undergraduate honors thesis," says Feng. "This exemplifies the extraordinary opportunities that undergraduates at Dartmouth have to become integral parts of research groups."

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>