Climate secrets — past, present and future revealed with new tool

At the University of Miami Rosenstiel School of Marine and Atmospheric Science, a new tool will apply a similar technology to find answers to historic climate changes from earth and marine sediment core samples. The XRF (X-ray Fluorescence) Core Scanner is only the second to make its way to the United States, and the first of this new and improved model made by Avaatech, a company based in the Netherlands.

“From a paleoclimate researcher's perspective, this is a dream come true,” said Larry C. Peterson, associate dean of students and the marine geology professor whose lab houses the scanner. “There is a tremendous amount of information about earth history preserved in the chemical composition of sediments deposited on the ocean floor, in lakes, and on land. By measuring the concentration of specific elements in these sediments, the XRF Core Scanner can help us document the history of drastic climate variations and past geological events, giving us more of an idea of the current and future state of our environment.”

Made possible through National Science Foundation funding, the XRF Core Scanner will be able to chemically analyze sediment cores quickly and without any physical damage. “Previously, analyses of this type could only be done by a time-consuming process of sampling the cores, then preparing and chemically analyzing the individual samples. The Core Scanner now allows us to determine the complete chemical composition of the same cores without disturbing them, and at a speed and measurement resolution previously unimaginable. What normally would take weeks or months of laboratory time can now be done within a few hours,” said Peterson. Data collected from each scan are transferred directly to computers in his lab for analysis. Once cores are loaded in the Core Scanner, the instrument can be operated from remote locations over the Internet.

Peterson and his German collaborator, Gerald Haug, were featured in the July/August 2005 issue of American Scientist for their work studying core samples taken from the Cariaco Basin off the Venezuelan coast. Using a similar XRF machine, the scientists were able to find geological records of severe droughts between 800 and 1000 AD – coincident with the collapse of Classic Mayan civilization.

“We have a collection of several thousand sediment cores from all the world's oceans stored here at the university,” Peterson said. “For each sample we take or receive, we usually study half and archive the remaining portion. Those archives will comprise the greater part of our research right now. We have a number of ongoing research projects, focusing mostly on climate change in the tropics, for which this new instrument will be invaluable.”

Media Contact

Ivy Kupec EurekAlert!

More Information:

http://www.miami.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors