Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Burning wetlands unleash sequestered mercury in wake of climate change

23.08.2006
Climate change appears to be contributing to the waking of a dangerous sleeping giant in the most northern wetlands of North America – mercury.

Released into the atmosphere most prodigiously with the launching of the industrial age, the toxic element falls back onto Earth, and accumulates particularly in North American wetlands. A Michigan State

University researcher working closely with the U.S. Geological Survey finds wildfires, growing more frequent and intense, are unleashing this sequestered mercury at levels up to 15 times greater than originally calculated.

The report, “Wildfires threaten mercury stocks in northern soils,” appears this week in the online edition of Geophysical Research Letters.

“This study makes the point that while peat lands are typically viewed as very wet and stagnant places, they do burn in continental regions, especially late in the season when water tables are depressed,” said Merritt Turetsky, assistant professor of plant biology and fisheries and wildlife at MSU. “When peat lands burn, they can release a huge amount of mercury that overwhelms regional atmospheric emissions. Our study is new in that it looks to the soil record to tell us what happens when peat soil burns, soil that has been like a sponge for mercury for a long time.”

Normal atmospheric conditions naturally carry the mercury emitted from burning fossil fuel and other industry northward, where it eventually settles on land or water surfaces. The cold, wet soils of the boreal forest region in Alaska and northern Canada have been efficient resting places for mercury.

“When we walk across the surface of a peat land, we are standing on many thousands of years of peat accumulation,” Turetsky said. “This type of wetland is actually doing us a service. Peat lands have been storing mercury from the atmosphere since well before and during the Industrial Revolution, locking it in peat where it’s not causing any biological harm, away from the food web.”

In addition to industrial activity, climate change also appears to be disrupting mercury’s cycle. Increasingly, northern wetlands are drying out. Forest fires are burning more frequently, more intensely, and later in the season, which Turetsky believes will make peat lands more vulnerable to fire. In May, Turetsky co-wrote another Geophysical Research Letters paper that documented recent changes in North American fires and suggested that more frequent summer droughts and severe fire weather have increased burn areas.

“We are suggesting that environmental mercury is just like a thermometer. Levels will rise in the atmosphere with climate change, but due to increasing fire activity in the north and not solely due to warming,” said Jennifer Harden, soil scientist at the U.S. Geological Survey and co-author of the study.

In this month’s paper, Turetsky, with co-authors Harden and James Crock of the U.S. Geological Survey; Hans Friedli and Lawrence Radke of the National Center for Atmospheric Research; and Mike Flannigan and Nicholas Payne of the Canadian Forest Service, measured the amount of mercury stored in soils and vegetation of forests and peat lands, then used historical burn areas and emission models to estimate how much of that mercury is released to the atmosphere at a regional scale during fires.

The group has spent more than five years studying prescribed burns in addition to natural fires to measure the influence of burning on terrestrial mercury storage. They also have sampled smoke plumes to measure atmospheric mercury levels as fires blaze.

Their findings indicated that drier conditions in northern regions will cause soil to relinquish its hold on hundreds of years of mercury accumulation, sending that mercury back into the air at levels considerably higher than previously realized.

“We’re talking about mercury that has been relatively harmless, trapped in peat for hundreds of years, rapidly being spewed back into the air,” Turetsky said. “Some of it will fall back onto soils. Some will fall into lakes and streams where it could become toxic in food chains.

“Our findings show us that climate change is complex and will contribute to the pollution of food chains that are very far away from us, in remote regions of the north.”

The research was funded by the U.S. Geological Survey, the National Center of Atmospheric Research (supported by the National Science Foundation), and the Electric Power Research Institute. Turetsky’s May paper in Geophysical Research Letters was funded by NASA. Turetsky’s work also is supported by the MSU Michigan Agricultural Research Station.

Merritt Turetsky | EurekAlert!
Further information:
http://www.msu.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>