Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows earthquake shaking triggers aftershocks

08.06.2006


A new analysis of earthquake data indicates that aftershocks are triggered by the shaking associated with the mainshock, rather than by the added stress on nearby faults resulting from rearrangement of the Earth’s crust.



The triggering of aftershocks by shaking may seem obvious, but is in fact a surprising result, said Emily Brodsky, assistant professor of Earth sciences at the University of California, Santa Cruz.

"The problem is that it’s not clear how shaking can trigger an aftershock that doesn’t happen right away, but happens a day or two after the earthquake. That’s why most seismologists have thought that aftershocks are triggered by static stress resulting from the movement of the crust," Brodsky said.


Brodsky is coauthor of a paper describing the new findings in the June 8 issue of Nature. The first author of the paper is Karen Felzer, who began work on the study as a postdoctoral researcher with Brodsky at UCLA and is now with the U.S. Geological Survey in Pasadena.

Felzer and Brodsky looked at the distribution of aftershocks in relation to their distance from the site of the mainshock. They observed a smooth, consistent trend, with the number of aftershocks falling off steeply with increasing distance from the mainshock over a range from 0.2 to 50 kilometers (0.12 to 30 miles).

The smooth trend suggests that the same triggering process is operating over the entire distance range. But static stress is negligible at the far end of the range, so the dynamic stress from shaking must be the trigger, Felzer said.

"No one expected small earthquakes to trigger aftershocks at these distances," she said. "The traditional idea is that the aftershock zone is one to two times the length of the fault rupture, so for earthquakes of this size you wouldn’t expect to see aftershocks beyond more than one kilometer. We’re seeing aftershocks all the way out to 50 kilometers."

Furthermore, the aftershocks fall off in the same relation to distance as is seen in the decay of seismic waves. In other words, the number of aftershocks and the amount of shaking show the same mathematical relation to distance from the mainshock (an "inverse power law" relation).

"That’s the kicker. The aftershocks fall off with distance in the same way that seismic waves do," Brodsky said. "We propose that the chance of having an aftershock depends directly on the amplitude of the shaking."

This hypothesis is consistent not only with the researchers’ measurements of how aftershock density varies with distance, but also with previous measurements of the number of aftershocks triggered by a mainshock of a particular magnitude, Brodsky said.

The data analyzed in this study were obtained from a large catalog of southern California earthquakes with precise earthquake locations, published in 2005. This research was supported in part by a grant from the National Science Foundation.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht Research icebreaker Polarstern begins the Antarctic season
09.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Far fewer lakes below the East Antarctic Ice Sheet than previously believed
08.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>