Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists use biotools to understand geosystems

13.10.2005


The goal: Control toxin mobility



If you have pathogenic bacteria in the groundwater, flowing through the soil, are those bacteria going to attach to a mineral surface or are they going to reach your well?

Virginia Tech researchers are looking at the mobility of bacteria and of heavy metals in surface and ground water. Geosciences professor Michael Hochella Jr. will present recent findings at the Geological Sciences of America national meeting in Salt Lake City Oct. 16-19.


How do we understand when bacteria will stick? What are the sticking efficiencies of bacteria on minerals? If they are high, there is a good chance it will be bound by minerals. If they are low, the bacteria will bounce off. "That is a frequent theme with toxins," said Hochella. "How mobile are they? Will they stick on surfaces or transport through water or air? Mobility is not good.

"Geologists are now becoming microbiologists in order to discover how biosystems affect geosystems," he said. "We study bacteria and other microorganisms in sophisticated ways. Geoscience Ph.D. students take courses in microbiology and biochemistry and apply biotools to geosystems."

Ph.D. student Tracy (Cail) Bank did her dissertation research on the sticking efficiencies of Enterococcus faecalis bacteria, which causes opportunistic urinary tract infections and wound infections, and is becoming antibiotic resistant. "We also picked it for this research because it is spherical," Hochella said.

Bank attached a single bacterial cell as the tip of a cantilever in an atomic force microscope, lowered it to a mineral surface in water, and measured the exceptionally small approach and adhesion forces present. She used a mathematical model (the interaction force boundary layer model) to determine the sticking efficiencies. Thus, she has provided for the first time a direct measurement of how likely those cells are to stick to those surfaces.

She used a silica glass surface, which mimics quartz, the single most common mineral in the curst of the earth, and the principal mineral in sandstones. "Water flowing through sandstone is a common occurrence," Hochella said.

Bank altered the pH of the water and discovered significant differences in stickiness as a result. As the water went from neutral to slightly acidic, the sticking efficiencies increased dramatically.

Bank’s unique research with E. faecalis took several years. She now works at the environmental sciences division of Oak Ridge National Lab. "It is up to others to test other minerals," Hochella said.

He will also describe transmission electron microscope techniques used to study nanoparticles in surface water, groundwater, and drinking water and to determine the role of such particles in transporting heavy metals. Hochella discovered nanoparticles binding heavy metals in the course of his research on transport of such metals from the Clark Fork Superfund Complex in Montana.

The talk, "New insights into the identity, characteristics, and transport of small biotic and abiotic particles in the critical zone, by Hochella and Bank, will be presented at 9: 15 a.m. on Wednesday, Oct. 19, at the Salt Palace Convention Center room 251 AB. Virginia Tech faculty members and students will present more than 30 papers at the GSA national meeting.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.geol.vt.edu/profs/mfh/mfh-r.html

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>