Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers go into action after Tsunami

21.03.2005


British researchers have launched urgent research programmes in order to learn lessons from the recent Indian Ocean Tsunami disaster. Such knowledge is relevant to both UK, and overseas disaster assessment and prevention programmes.



Funded by grants from the Engineering and Physical Sciences Research Council (EPSRC), teams from the University of Cambridge, the University of Newcastle, and University College London have looked at differing aspects of the tsunami’s effects. Their objectives were to collect and assess appropriate structural, topographical, seismological and tsunami related data.

The University of Newcastle received a grant from EPSRC to undertake an immediate survey mission to the regions affected by the tsunami. Dr Sean Wilkinson from the University’s Civil Engineering Department, with Dr Tiziana Rossetto from University College London, participated as members of the Earthquake Engineering Field Investigation Team (EEFIT) - which has now returned from the disaster zone. Their aim was to research the damage to buildings and infrastructure caused by the tsunami and to make recommendations to reduce or prevent damage in the future.


A further objective was to assess the reasons for the high death toll and suggest what engineering / architectural measures could be taken to save lives. Drs Wilkinson and Rossetto spent 10 days in Sri Lanka and Thailand researching the tsunami’s impact on structures, coastal topography, and the differences in how well-designed and badly-designed buildings stood up to the events.

Dr Sean Wilkinson said of the findings: "What we found was quite unexpected. Even in the worst hit areas, many well engineered buildings suffered only modest structural damage, however they offered little protection from the tsunami. This is the opposite to what we find for normal earthquakes and has major implications for coastal communities worldwide."

A research team from the Department of Architecture at the University of Cambridge is using EPSRC funding in collating eyewitness reports from British citizens, field surveys, and satellite imagery to build a more complete understanding of the tsunami’s behaviour and potential risks.

"More than any other recent earthquake-related disaster, the immediate and long term effects are not confined to the Indian Ocean basin, but are still being felt around the world. Rapid recording of damage data helps to identify when and where such changes have occurred," said Professor Robin Spence, the Cambridge project’s Principal Investigator.

The Cambridge University work has direct implications for UK coastal regions. Dr Ilan Kelman and Keiko Saito the project’s researchers, explain: "UK coastlines are vulnerable to rare but large scale tsunamis. Major storm damage occurs relatively frequently. The understanding of safer coastal development, which our research work could produce, will apply directly to UK practices."

The Engineering and Physical Sciences Research Council (EPSRC) reacted quickly to these funding requests and ensured that the opportunity for optimised research with direct relevance to science, and people’s lives, was achieved.

Lance Cole | EurekAlert!
Further information:
http://www.epsrc.ac.uk/

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>