Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic research without artificial source

22.12.2004


Researchers at TU Delft have made progress in the theoretical foundation of a special subsoil imaging technique. This technique could be used to chart underground mineral resources, it is called “acoustic daylight imaging”. The method uses natural acoustic signals, already present in the earth, to create an image of the subsurface layers. This week, Professor Kees Wapenaar will publish an article in the renowned scientific magazine “Physical Review Letters”.



Usually, the composition of the subsurface is researched using generated acoustic signals that are sent into he ground. The sonic reflections are then analysed (the basic principle of seismics). This is no longer necessary with acoustic daylight imaging. Theoretically, taking surface measurements and subjecting the results to a series of mathematical calculations would be enough to create an image of the subsurface.

The theoretical possibility of seismic imaging using only naturally occurring sources of sound has previously been shown. This phenomenon is, however, no longer of purely theoretical importance. A current example of the possible application and development of acoustic daylight imaging is the Lofar-project in Exloo (in the Dutch province of Drente). This large scale scientific project not only encompasses the construction of the world’s largest radio-telescope, but also the realisation of the largest sensor network in Europe. This network would provide a development platform for, for example, geophysical applications.


In October of 2004, geophysicists from TU Delft, TNO and the KNMI therefore started placing geophones (a sort of microphones used to measure underground sound waves) in the testing field in Exloo. During ten years they will use these geophones to ‘listen’ to naturally occurring underground sounds. The expectation is that this will provide more understanding about the structure of the subsurface as well as providing a more accurate scientific model of how the subsurface is moving. The latter is of importance in the mining of resources such as gas, oil and coal.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>