Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering Arctic climate puzzles - New findings from the Arctic Coring Expedition

17.11.2004


An international team of scientists is currently evaluating sediment cores collected during the Arctic Coring Expedition, ACEX, conducted under the auspices of the Integrated Ocean Drilling Program (IODP). ACEX, conducted in August and September this year, is an exploration success story. At a press conference in the University of Bremen, Germany, today (16 November 2004) the co-chief scientists of the expedition described the first results from this expedition.



Scientists from ten countries gathered in Bremen over the last two weeks. They analyzed sediment cores from 430 metres beneath the Arctic Ocean sea-floor. These cores reveal new insights into the past climate of the Arctic. Preliminary results show that the ACEX recovered the first ever climate record of the Arctic Ocean over the past 56 million years. Co-chief scientists Kate Moran, University of Rhode Island, and Jan Backman, Stockholm University, described key findings.

The Arctic Ocean was frozen much earlier than previoulsy thought. Professor Moran said that “we are trying to define the exact time when ice appeared but it seems clear that perennial ice existed as early as 15 million years ago”. Professor Jan Backman added that these results would become more precise over the next few months and “we have cores that will hopefully allow us to distinguish between seasonal (winter only) ice and perennial ice”.


Initial offshore results indicate that the upper hundred and sixty meters represent a record of the past ~15 million years comprised of sediment with ice-rafted debris and occasional small pebbles, suggesting that ice covered conditions extended at least this far back in time. Details of the ice cover, timing and characteristic (e.g., perennial vs. seasonal cover) awaits further study.

The sediment record during the late Eocene is of dark, organic-rich siliceous composition with a depositional environment dominated by ice-free, warmer surface ocean waters. An interval recovered around 49 million years ago reveals an abundance of a freshwater fern (Azolla spp.) suggesting that a surface fresh/low salinity water setting dominated the region during this time period. Although predictions had placed the base of the sediment column at 50 million years, drilling revealed that the latest Paleocene to earliest Eocene boundary interval was recovered. During this time, about 55 million years ago, the Arctic was subtropical with warm surface ocean temperatures.

ACEX also penetrated into the underlying sedimentary bedrock, confirming the hypothesis that the Lomonosov Ridge crust is of shallow-water, continental origin and of Cretaceous age.

Professor Jan Backman described operating in this challenging environment: “At times, the drillsite was covered with ice 2-3 metres thick. At one point we encountered an ice flow of multiyear ice (harder and denser than ice frozen only in one Arctic winter) hundred of metres across and over 4 metres thick which was like driving into a brick wall.” But, with the aid of the three ice-breaking vessels the coring operations were successfully completed. The scientists will take home samples and will undertake further investigations during the next months – with more exciting results to come.

Eva Grönlund | alfa
Further information:
http://www.iodp.de
http://www.polar.se

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>