Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People cause more soil erosion than all natural processes

04.11.2004


Human activity causes 10 times more erosion of continental surfaces than all natural processes combined, an analysis by a University of Michigan geologist shows.



People have been the main cause of worldwide erosion since early in the first millennium, said Bruce Wilkinson, a U-M professor of geological sciences. Wilkinson will present his findings Nov. 8 at a meeting of the Geological Society of America in Denver, Colo.

Many researchers have tried to assess the impact of human activity on soil loss, but most have only guessed at how erosion due to natural forces such as glaciers and rivers compares with that caused by human activity---mainly agriculture and construction, Wilkinson said. He used existing data on sedimentary rock distributions and abundances to calculate rates of natural erosion. "If you ask how fast erosion takes place over geologic time---say over the last 500 million years---on average, you get about 60 feet every million years," Wilkinson said. In those parts of the United States where soil is being eroded by human agricultural activity, however, the rate averages around 1,500 feet per million years, and rates are even higher in other parts of the world. Natural processes operate over areas larger than those affected by agriculture and construction, but even taking that into account, "the bottom line is, we move about 10 times as much sediment as all natural processes put together," he said.


Because soil formation proceeds at about the same rate as natural erosion, Wilkinson’s results mean that humans are stripping soil from the surface of the Earth far faster than nature can replace it. "This situation is particularly critical," Wilkinson said, "because the Earth’s human population is growing rapidly and because almost all potentially arable land is now under the plow."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.geosociety.org
http://www.umich.edu

More articles from Earth Sciences:

nachricht Ten-year anniversary of the Neumayer Station III
18.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht The pace at which the world’s permafrost soils are warming
16.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>