Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sopping salts could reveal history of water on Mars

07.10.2004


Epsom-like salts believed to be common on Mars may be a major source of water there, say geologists at Indiana University Bloomington and Los Alamos National Laboratory. In their report in this week’s Nature, the scientists also speculate that the salts will provide a chemical record of water on the Red Planet.



"The Mars Odyssey orbiter recently showed that there may be as much as 10 percent water hidden in the Martian near-surface," said David Bish, Haydn Murray Chair of Applied Clay Mineralogy at IU and a co-author of the report. "We were able to show that under Mars-like conditions, magnesium sulfate salts can contain a great deal of water. Our findings also suggest that the kinds of sulfates we find on Mars could give us a lot of insight into the history of water and mineral formation there."

The scientists learned that magnesium sulfate salts are extremely sensitive to changes in temperature, pressure and humidity. For that reason, the scientists argue that information contained in the salts could be easily lost if samples were brought back to Earth for study. Instead, they say, future missions to Mars should measure the properties of the salts on site.


The existence of magnesium sulfate salts on Mars was first suggested by the 1976 Viking missions and has since been confirmed by the Mars Exploration Rover as well as the Odyssey and Pathfinder missions. One way to quash remaining doubts that the salts are really there, however, would be to equip a Martian rover with an X-ray diffractometer -- an instrument that analyzes the properties of crystals. Coincidentally, such a device could also be used to examine magnesium sulfate salts on Mars. Bish and collaborators from NASA Ames and Los Alamos are currently developing a miniaturized X-ray diffractometer with NASA funding.

Some magnesium sulfate salts trap more water than others. Epsomite, for example, has the most water in it -- 51 percent by weight -- while hexahydrite and kieserite have less (47 percent and 13 percent by weight, respectively). The proportion of water to magnesium sulfate affects the chemical properties of the different salts.

While varying temperature, pressure and humidity inside an experimental chamber, the scientists studied how the different magnesium salts transform over time.

When temperature and pressure inside an experimental chamber were lowered to Mars-like conditions (minus 64 degrees Fahrenheit, and less than 1 percent of Earth’s normal surface pressure), crystals of epsomite initially transformed into slightly less watery hexahydrite crystals and then became disorganized, but they still contained water. In contrast, "kieserite doesn’t let go of its water very easily, even at very low pressure and humidity or at elevated temperatures," Bish said.

But when the scientists increased humidity inside the experimental chamber, they found that kieserite transformed into hexahydrite and then epsomite, which have more water.

Bish and his Los Alamos colleagues believe that the proportion and distribution of hexahydrite, kieserite and other magnesium sulfate salts on Mars may hold a record of past changes in climate and whether or not water once flowed there. However, kieserite might not be preserved through cycles of wetting and drying because of its ability to rehydrate to hexahydrite and epsomite, which can then become amorphous through drying.

Los Alamos National Laboratory geologists David Vaniman, Steve Chipera, Claire Fialips, William Carey and William Feldman also contributed to the study. It was funded by LANL Directed Research and Development Funding and NASA Mars Fundamental Research Program grants.

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>