Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI oceanographers find gulf stream migration affects biological productivity in unexpected way

04.06.2004


Situated between the continental shelf of the eastern United States and the north wall of the Gulf Stream flowing eastward from Cape Hatteras, the Slope Sea is a transition region between the productively rich coastal waters and the productively static open ocean.



In the current SeaWiFS special issue of Deep Sea Research II, University of Rhode Island oceanographers Stephanie E. Schollaert, Thomas Rossby, and James Yoder describe their four-year, NASA-funded study of the Slope Sea along the Gulf Stream in order to understand the processes that control the yearly variability of surface concentrations of chlorophyll, the pigment found in plants and algae.

Annually, cold, fresh Labrador waters "spill" into the Slope Sea, influencing the path of the Gulf Stream, pushing it south in the spring. Since the advent of ocean color remote sensing in 1978 and particularly since the 1997 launch of the dedicated ocean color sensor SeaWiFS, the surface chlorophyll concentration of waters off the U.S. east coast have been found to be highest in the north (e.g., Gulf of Maine, Georges Bank, Labrador shelf) and during the winter when the Gulf Stream is farthest south and more Labrador water is present.


The scientists expected that during the years when the Slope Sea expanded due to a greater transport of Labrador water, primary productivity, or the production of plankton that forms the basis of the food chain, would be increased. However, their results showed the opposite effect.

The Gulf Stream location determines the area of the Slope Sea and the extent to which nutrients are present. Years when the Gulf Stream is farther south the average chlorophyll concentrations are smaller and vice-versa when the Gulf Stream is offset to the north. An increased number of Gulf Stream rings may also play an important role in supplying additional nutrients to the surface waters. While the north-south movement of the Gulf Stream is the primary determinant of Slope Sea chlorophyll concentrations, the current’s movement may also generate other effects that may influence biological productivity. Understanding how the Gulf Stream’s migration affects biological productivity in the Slope Sea will help scientists make inferences about large-scale, low frequency climatic effects upon the carbon cycle of ocean margin waters.


The URI Graduate School of Oceanography is one of the country’s largest marine science education programs, and one of the world’s foremost marine research institutions. Founded in 1961 in Narragansett, RI, GSO serves a community of scientists who are researching the causes of and solutions to such problems as acid rain, harmful algal blooms, global warming, air and water pollution, oil spills, overfishing, and coastal erosion. GSO is home to the Coastal Institute, the Coastal Resources Center, Rhode Island Sea Grant, the Institute for Archaeological Oceanography, the Pell Marine Science Library, and the National Sea Grant Library.

Lisa Cugini | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Earth Sciences:

nachricht First research results on the "spectacular meteorite fall" of Flensburg
18.02.2020 | Westfälische Wilhelms-Universität Münster

nachricht The Antarctica Factor: model uncertainties reveal upcoming sea-level risk
14.02.2020 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>