Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Classic view wrong, scientists say, huge pots of magma not brewing under most volcanoes

21.04.2004


About 75,000 years ago, some scientists say, the last truly colossal volcanic eruption on Earth came close to wiping out all the primates, including humans. That eruption occurred when the Toba volcano in Indonesia exploded in an almost unbelievably shattering display.



Other people with a flare for the dramatic warn that a supervolcano underlying Yellowstone National Park could erupt in the not-so-distant future and push humanity to the verge of extinction. University of North Carolina at Chapel Hill scientists say not to worry, especially anytime soon.

"It’s not hyperbole to say that the biggest eruptions could bring an end to civilization," said Dr. Allen F. Glazner, professor of geologic sciences at UNC. "Such eruptions are evident in the geologic record, and the classic textbook picture of volcanoes implies that huge pots of magma are brewing under most active volcanoes today."


Happily, that traditional view is wrong, according to Glazner’s latest research -- work conducted jointly with UNC assistant geology professor Dr. Drew S. Coleman and Dr. John M. Bartley of the University of Utah.

In two studies appearing in April issue of GSA Today and the May issue of Geology, the scientists present new insights into the potential for volcanoes to produce gigantic eruptions -- explosions thousands of times larger than the 1980 eruption of Mount Saint Helens.

"Although evidence for such massive eruptions is found throughout the geologic record, our investigation of magmas frozen below long-extinct volcanoes in California’s Sierra Nevada led us to conclude that the largest eruptions are significantly less likely than many people believed," Glazner said.

In their investigation, team members studied magma bodies that cooled beneath the land’s surface. Those bodies, called "plutons" after Pluto, the Greek god of the underworld, are the chief building blocks of the Earth’s crust, he said. Vast pieces of formerly molten rock, they contain many known rock and mineral resources.

"Much of Chapel Hill, for example, lies on the Chapel Hill Granite pluton and its associated volcanic rocks," the geologist said. "Most scientists picture plutons as solidifying from enormous underground blobs of molten rock known as magma that feed overlying volcanoes."

Typically, plutons are hundreds to thousands of cubic kilometers in volume. For that reason, geologists long assumed that huge stores of magma are commonplace active volcanoes, Glazner said. They also reasoned that the potential for truly catastrophic eruptions exists in many volcanically active areas.

"Our new work casts doubt on the assumption that gigantic eruptions should be relatively common," he said.

Glazner, Coleman and Bartley combined observations of the deep Earth provided by seismic waves produced during earthquakes with mathematical modeling of magma cooling and precise dating and field mapping Sierra Nevada plutons.

Because small percentages of liquid in a rock slow seismic waves dramatically, the waves are sensitive probes for the tiniest volumes of molten rock, Glazner said.

"However, even under active volcanoes, seismic waves show little evidence for big blobs of magma," Coleman said. "Our mathematical models indicate that if big magma chambers existed, they should solidify in less than a million years, but new high-precision age determinations completed here at UNC indicate that plutons can take up to 10 million years to form."

New field mapping demonstrated that plutons once thought to be thousands of cubic kilometers of homogeneous rock that cooled from a single magma reservoir preserve subtle evidence of a much slower, piecemeal assembly, he said.

The results suggest that plutons are likely to be built by a multitude of small molten intrusions over millions of years and that plutons are not like a closed can of food waiting to explode when heated, Coleman said.

"We conclude that volcanoes are more prone to chugging along, producing many small -- though still dangerous -- eruptions such as the 1980 eruption of Mount Saint Helens, rather than huge civilization-destroying eruptions," he said.

Former UNC College of Arts and Sciences students Walt Gray and Ryan Z. Taylor, now with the Southwest Research Institute and the U.S. Forest Service, respectively, contributed to the new work. The National Science Foundation supported it.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Earth Sciences:

nachricht New Measurement Device: Carbon Dioxide As Geothermometer
21.05.2019 | Universität Heidelberg

nachricht Cause for variability in Arctic sea ice clarified
14.05.2019 | Max-Planck-Institut für Meteorologie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>